Non-Commutative Resistance Networks

In the setting of finite-dimensional C*-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
1. Verfasser: Rieffel, M.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/146653
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Non-Commutative Resistance Networks / M.A. Rieffel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In the setting of finite-dimensional C*-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corresponding matricial structure and metric on the state space. We also examine associated Laplace and Dirac operators, quotient energy seminorms, resistance distance, and the relationship with standard deviation.