Integrable Systems Related to Deformed so(5)

We investigate a family of integrable Hamiltonian systems on Lie-Poisson spaces L+(5) dual to Lie algebras soλ,α(5) being two-parameter deformations of so(5). We integrate corresponding Hamiltonian equations on L+(5) and T∗R⁵ by quadratures as well as discuss their possible physical interpretation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Dobrogowska, A., Odzijewicz, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/146683
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Integrable Systems Related to Deformed so(5) / A. Dobrogowska, A. Odzijewicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146683
record_format dspace
fulltext
spelling irk-123456789-1466832019-02-11T01:24:49Z Integrable Systems Related to Deformed so(5) Dobrogowska, A. Odzijewicz, A. We investigate a family of integrable Hamiltonian systems on Lie-Poisson spaces L+(5) dual to Lie algebras soλ,α(5) being two-parameter deformations of so(5). We integrate corresponding Hamiltonian equations on L+(5) and T∗R⁵ by quadratures as well as discuss their possible physical interpretation. 2014 Article Integrable Systems Related to Deformed so(5) / A. Dobrogowska, A. Odzijewicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H06; 37J15; 53D17 DOI:10.3842/SIGMA.2014.056 http://dspace.nbuv.gov.ua/handle/123456789/146683 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We investigate a family of integrable Hamiltonian systems on Lie-Poisson spaces L+(5) dual to Lie algebras soλ,α(5) being two-parameter deformations of so(5). We integrate corresponding Hamiltonian equations on L+(5) and T∗R⁵ by quadratures as well as discuss their possible physical interpretation.
format Article
author Dobrogowska, A.
Odzijewicz, A.
spellingShingle Dobrogowska, A.
Odzijewicz, A.
Integrable Systems Related to Deformed so(5)
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Dobrogowska, A.
Odzijewicz, A.
author_sort Dobrogowska, A.
title Integrable Systems Related to Deformed so(5)
title_short Integrable Systems Related to Deformed so(5)
title_full Integrable Systems Related to Deformed so(5)
title_fullStr Integrable Systems Related to Deformed so(5)
title_full_unstemmed Integrable Systems Related to Deformed so(5)
title_sort integrable systems related to deformed so(5)
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146683
citation_txt Integrable Systems Related to Deformed so(5) / A. Dobrogowska, A. Odzijewicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT dobrogowskaa integrablesystemsrelatedtodeformedso5
AT odzijewicza integrablesystemsrelatedtodeformedso5
first_indexed 2025-07-11T00:25:28Z
last_indexed 2025-07-11T00:25:28Z
_version_ 1837308084952760320