Local Proof of Algebraic Characterization of Free Actions

Let G be a compact Hausdorff topological group acting on a compact Hausdorff topological space X. Within the C∗-algebra C(X) of all continuous complex-valued functions on X, there is the Peter-Weyl algebra PG(X) which is the (purely algebraic) direct sum of the isotypical components for the action o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Baum, P.F., Hajac, P.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/146694
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Local Proof of Algebraic Characterization of Free Actions / P.F. Baum, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146694
record_format dspace
fulltext
spelling irk-123456789-1466942019-02-12T01:25:02Z Local Proof of Algebraic Characterization of Free Actions Baum, P.F. Hajac, P.M. Let G be a compact Hausdorff topological group acting on a compact Hausdorff topological space X. Within the C∗-algebra C(X) of all continuous complex-valued functions on X, there is the Peter-Weyl algebra PG(X) which is the (purely algebraic) direct sum of the isotypical components for the action of G on C(X). We prove that the action of G on X is free if and only if the canonical map PG(X)⊗C(X/G)PG(X)→PG(X)⊗O(G) is bijective. Here both tensor products are purely algebraic, and O(G) denotes the Hopf algebra of ''polynomial'' functions on G. 2014 Article Local Proof of Algebraic Characterization of Free Actions / P.F. Baum, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 22C05; 55R10; 57S05; 57S10 DOI:10.3842/SIGMA.2014.060 http://dspace.nbuv.gov.ua/handle/123456789/146694 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let G be a compact Hausdorff topological group acting on a compact Hausdorff topological space X. Within the C∗-algebra C(X) of all continuous complex-valued functions on X, there is the Peter-Weyl algebra PG(X) which is the (purely algebraic) direct sum of the isotypical components for the action of G on C(X). We prove that the action of G on X is free if and only if the canonical map PG(X)⊗C(X/G)PG(X)→PG(X)⊗O(G) is bijective. Here both tensor products are purely algebraic, and O(G) denotes the Hopf algebra of ''polynomial'' functions on G.
format Article
author Baum, P.F.
Hajac, P.M.
spellingShingle Baum, P.F.
Hajac, P.M.
Local Proof of Algebraic Characterization of Free Actions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Baum, P.F.
Hajac, P.M.
author_sort Baum, P.F.
title Local Proof of Algebraic Characterization of Free Actions
title_short Local Proof of Algebraic Characterization of Free Actions
title_full Local Proof of Algebraic Characterization of Free Actions
title_fullStr Local Proof of Algebraic Characterization of Free Actions
title_full_unstemmed Local Proof of Algebraic Characterization of Free Actions
title_sort local proof of algebraic characterization of free actions
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146694
citation_txt Local Proof of Algebraic Characterization of Free Actions / P.F. Baum, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT baumpf localproofofalgebraiccharacterizationoffreeactions
AT hajacpm localproofofalgebraiccharacterizationoffreeactions
first_indexed 2025-07-11T00:26:29Z
last_indexed 2025-07-11T00:26:29Z
_version_ 1837308145823645696