Integration of Cocycles and Lefschetz Number Formulae for Differential Operators
Let E be a holomorphic vector bundle on a complex manifold X such that dimCX=n. Given any continuous, basic Hochschild 2n-cocycle ψ2n of the algebra Diffn of formal holomorphic differential operators, one obtains a 2n-form fε,ψ2n(D) from any holomorphic differential operator D on E. We apply our ear...
Gespeichert in:
Datum: | 2011 |
---|---|
1. Verfasser: | Ramadoss, A.C. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2011
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146775 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Integration of Cocycles and Lefschetz Number Formulae for Differential Operators / A.C. Ramadoss // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
The Lefschetz Theorem for multivalued maps
von: J. M. Kiszkiel
Veröffentlicht: (2013) -
Quantum Isometry Groups of Noncommutative Manifolds Obtained by Deformation Using Dual Unitary 2-Cocycles
von: Goswami, D., et al.
Veröffentlicht: (2014) -
A formula for the number of weak endomorphisms on paths
von: Knauer, U., et al.
Veröffentlicht: (2018) -
A formula for the number of weak endomorphisms on paths
von: Knauer, Ulrich, et al.
Veröffentlicht: (2019) -
On the fractal nature of combinatorial sets and finding of formulas for combinatorial numbers
von: N. K. Tymofiieva
Veröffentlicht: (2020)