Revisiting the Symmetries of the Quantum Smorodinsky-Winternitz System in D Dimensions
The D-dimensional Smorodinsky-Winternitz system, proposed some years ago by Evans, is re-examined from an algebraic viewpoint. It is shown to possess a potential algebra, as well as a dynamical potential one, in addition to its known symmetry and dynamical algebras. The first two are obtained in hyp...
Gespeichert in:
Datum: | 2011 |
---|---|
1. Verfasser: | Quesne, C. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2011
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146804 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Revisiting the Symmetries of the Quantum Smorodinsky-Winternitz System in D Dimensions / C. Quesne // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 90 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Synchronization and anchoring of two non-harmonic canonical-dissipative oscillators via Smorodinsky-Winternitz potentials
von: Mongkolsakulvong, S., et al.
Veröffentlicht: (2017) -
Extended Hamiltonians, Coupling-Constant Metamorphosis and the Post-Winternitz System
von: Chanu, C.M., et al.
Veröffentlicht: (2015) -
Coherent States for Tremblay-Turbiner-Winternitz Potential
von: Sucu, Y., et al.
Veröffentlicht: (2012) -
Category of Vilenkin−Kuznetsov−Smorodinsky−Smirnov trees
von: S. S. Moskaliuk, et al.
Veröffentlicht: (2012) -
Category of Vilenkin−Kuznetsov−Smorodinsky−Smirnov trees
von: S. S. Moskaliuk, et al.
Veröffentlicht: (2012)