Fusion Procedure for Cyclotomic Hecke Algebras
A complete system of primitive pairwise orthogonal idempotents for cyclotomic Hecke algebras is constructed by consecutive evaluations of a rational function in several variables on quantum contents of multi-tableaux. This function is a product of two terms, one of which depends only on the shape of...
Gespeichert in:
Datum: | 2014 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2014
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146821 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Fusion Procedure for Cyclotomic Hecke Algebras / O.V. Ogievetsky, Loïc Poulain d'Andecy // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146821 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468212019-02-12T01:24:18Z Fusion Procedure for Cyclotomic Hecke Algebras Ogievetsky, O.V. Loïc Poulain d'Andecy A complete system of primitive pairwise orthogonal idempotents for cyclotomic Hecke algebras is constructed by consecutive evaluations of a rational function in several variables on quantum contents of multi-tableaux. This function is a product of two terms, one of which depends only on the shape of the multi-tableau and is proportional to the inverse of the corresponding Schur element. 2014 Article Fusion Procedure for Cyclotomic Hecke Algebras / O.V. Ogievetsky, Loïc Poulain d'Andecy // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 15 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 20C08; 05E10 DOI:10.3842/SIGMA.2014.039 http://dspace.nbuv.gov.ua/handle/123456789/146821 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A complete system of primitive pairwise orthogonal idempotents for cyclotomic Hecke algebras is constructed by consecutive evaluations of a rational function in several variables on quantum contents of multi-tableaux. This function is a product of two terms, one of which depends only on the shape of the multi-tableau and is proportional to the inverse of the corresponding Schur element. |
format |
Article |
author |
Ogievetsky, O.V. Loïc Poulain d'Andecy |
spellingShingle |
Ogievetsky, O.V. Loïc Poulain d'Andecy Fusion Procedure for Cyclotomic Hecke Algebras Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Ogievetsky, O.V. Loïc Poulain d'Andecy |
author_sort |
Ogievetsky, O.V. |
title |
Fusion Procedure for Cyclotomic Hecke Algebras |
title_short |
Fusion Procedure for Cyclotomic Hecke Algebras |
title_full |
Fusion Procedure for Cyclotomic Hecke Algebras |
title_fullStr |
Fusion Procedure for Cyclotomic Hecke Algebras |
title_full_unstemmed |
Fusion Procedure for Cyclotomic Hecke Algebras |
title_sort |
fusion procedure for cyclotomic hecke algebras |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146821 |
citation_txt |
Fusion Procedure for Cyclotomic Hecke Algebras / O.V. Ogievetsky, Loïc Poulain d'Andecy // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 15 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT ogievetskyov fusionprocedureforcyclotomicheckealgebras AT loicpoulaindandecy fusionprocedureforcyclotomicheckealgebras |
first_indexed |
2025-07-11T00:41:20Z |
last_indexed |
2025-07-11T00:41:20Z |
_version_ |
1837309087312773120 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 10 (2014), 039, 13 pages
Fusion Procedure for Cyclotomic Hecke Algebras?
Oleg V. OGIEVETSKY †1†2†3 and Löıc POULAIN D’ANDECY †4
†1 Center of Theoretical Physics, Aix Marseille Université, CNRS,
UMR 7332, 13288 Marseille, France
E-mail: oleg@cpt.univ-mrs.fr
†2 Université de Toulon, CNRS, UMR 7332, 83957 La Garde, France
†3 On leave of absence from P.N. Lebedev Physical Institute,
Leninsky Pr. 53, 117924 Moscow, Russia
†4 Mathematics Laboratory of Versailles, LMV, CNRS UMR 8100,
Versailles Saint-Quentin University, 45 avenue des Etas-Unis,
78035 Versailles Cedex, France
E-mail: L.B.PoulainDAndecy@uva.nl
Received September 28, 2013, in final form March 29, 2014; Published online April 01, 2014
http://dx.doi.org/10.3842/SIGMA.2014.039
Abstract. A complete system of primitive pairwise orthogonal idempotents for cyclotomic
Hecke algebras is constructed by consecutive evaluations of a rational function in several
variables on quantum contents of multi-tableaux. This function is a product of two terms,
one of which depends only on the shape of the multi-tableau and is proportional to the
inverse of the corresponding Schur element.
Key words: cyclotomic Hecke algebras; fusion formula; idempotents; Young tableaux; Jucys–
Murphy elements; Schur element
2010 Mathematics Subject Classification: 20C08; 05E10
1 Introduction
This article is a continuation of the article [14] on the fusion procedure for the complex reflection
groups G(m, 1, n). The cyclotomic Hecke algebra H(m, 1, n), introduced in [2, 3, 4], is a natural
flat deformation of the group ring of the complex reflection group G(m, 1, n).
In [14], a fusion procedure, in the spirit of [12], for the complex reflection groups G(m, 1, n)
is suggested: a complete system of primitive pairwise orthogonal idempotents for the groups
G(m, 1, n) is obtained by consecutive evaluations of a rational function in several variables
with values in the group ring CG(m, 1, n). This approach to the fusion procedure relies on the
existence of a maximal commutative set of elements of CG(m, 1, n) formed by the Jucys–Murphy
elements.
Jucys–Murphy elements for the cyclotomic Hecke algebra H(m, 1, n) were introduced in [2]
and were used in [13] to develop an inductive approach to the representation theory of the chain
of the algebras H(m, 1, n). In the generic setting or under certain restrictions on the parameters
of the algebra H(m, 1, n) (see Section 2 for precise definitions), the Jucys–Murphy elements
form a maximal commutative set in the algebra H(m, 1, n).
A complete system of primitive pairwise orthogonal idempotents of the algebra H(m, 1, n) is
indexed by the set of standard m-tableaux of size n. We formulate here the main result of the
article. Let λ be an m-partition of size n and T be a standard m-tableau of shape λ.
?This paper is a contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa. The full
collection is available at http://www.emis.de/journals/SIGMA/InfiniteAnalysis2013.html
mailto:oleg@cpt.univ-mrs.fr
mailto:L.B.PoulainDAndecy@uva.nl
http://dx.doi.org/10.3842/SIGMA.2014.039
http://www.emis.de/journals/SIGMA/InfiniteAnalysis2013.html
2 O.V. Ogievetsky and L. Poulain d’Andecy
Theorem. The idempotent ET of H(m, 1, n) corresponding to the standard m-tableau T of
shape λ can be obtained by the following consecutive evaluations
ET = FλΦ(u1, . . . , un)
∣∣∣
u1=c1
· · ·
∣∣∣
un−1=cn−1
∣∣∣
un=cn
. (1)
Here Φ(u1, . . . , un) is a rational function with values in the algebra H(m, 1, n), Fλ is an
element of the base ring and c1, . . . , cn are the quantum contents of the m-nodes of T .
The classical limit of our fusion procedure for algebras H(m, 1, n) reproduces the fusion
procedure of [14] for the complex reflection groups G(m, 1, n). For CG(m, 1, n), the variables
of the rational function are split into two parts, one is related to the position of the m-node
(its place in the m-tuple) and the other one – to the classical content of the m-node. The
position variables can be evaluated simultaneously while the classical content variables have
then to be evaluated consequently from 1 to n. For the algebra H(m, 1, n), the information
about positions and classical contents is fully contained in the quantum contents, and now the
function Φ depends on only one set of variables.
Remarkably, the coefficient Fλ appearing in (1) depends only on the shape λ of the standard
m-tableau T (cf. with the more delicate fusion procedure for the Birman–Murakami–Wenzl
algebra [7]). In the classical limit, this coefficient depends only on the usual hook length, see [14].
However, in the deformed situation, the calculation of Fλ needs a non-trivial generalization of
the hook length. It appears that the coefficient Fλ is proportional to the inverse of the Schur
element (corresponding to the m-partition λ) associated to a specific symmetrizing form on
the algebra H(m, 1, n) (see [6, 11] for a calculation of these Schur elements and [5] for an
expression in terms of generalized hook lengths); for more precise statements, we refer to [15]
where we calculate, using the fusion formula presented here, weights of certain central forms
and in particular of these Schur elements.
For m = 1, the cyclotomic Hecke algebra H(1, 1, n) is the Hecke algebra of type A and our
fusion procedure reduces to the fusion procedure for the Hecke algebra in [8]. The factors in
the rational function are arranged in [8] in such a way that there is a product of “Baxterized”
generators on one side and a product of non-Baxterized generators on the other side. For m > 1
a rearrangement, as for the type A, of the rational function appearing in (1) is no more possible.
The additional, with respect to H(1, 1, n), generator of H(m, 1, n) satisfies the reflection
equation whose “Baxterization” is known [9]. But – and this is maybe surprising – the full
Baxterized form is not used in the construction of the rational function in (1). The rational ex-
pression involving the additional generator satisfies only a certain limit of the reflection equation
with spectral parameters.
The Hecke algebra of type A is the natural quotient of the Birman–Murakami–Wenzl algebra.
The fusion procedure, developed in [7], for the Birman–Murakami–Wenzl algebra provides a one-
parameter family of fusion procedures for the Hecke algebra of type A. We think that for m > 1
the fusion procedure (1) can be included into a one-parameter family as well.
2 Definitions
2.1 Cyclotomic Hecke algebra and Baxterized elements
Let m ∈ Z>0 and n ∈ Z≥0. Let q, v1, . . . , vm be complex numbers with q 6= 0. The cyclotomic
Hecke algebra H(m, 1, n+ 1) is the unital associative algebra over C generated by τ , σ1, . . . , σn
with the defining relations
σiσi+1σi = σi+1σiσi+1 for i = 1 . . . , n− 1,
σiσj = σjσi for i, j = 1, . . . , n such that |i− j| > 1,
Fusion Procedure for Cyclotomic Hecke Algebras 3
τσ1τσ1 = σ1τσ1τ,
τσi = σiτ for i > 1,
σ2i =
(
q − q−1
)
σi + 1 for i = 1, . . . , n,
(τ − v1) · · · (τ − vm) = 0.
We define H(m, 1, 0) := C. The cyclotomic Hecke algebras H(m, 1, n) form a chain (with
respect to n) of algebras defined by inclusions H(m, 1, n) 3 τ, σ1, . . . , σn−1 7→ τ, σ1, . . . , σn−1 ∈
H(m, 1, n+ 1) for any n ≥ 0. These inclusions allow to consider (as it will often be done in the
article) elements of H(m, 1, n) as elements of H(m, 1, n+ n′) for any n′ = 0, 1, 2, . . . .
In the sequel we assume the following restrictions on the parameters q, v1, . . . , vm:
1 + q2 + · · ·+ q2N 6= 0 for N such that N ≤ n, (2)
q2ivj − vk 6= 0 for i, j, k such that j 6= k and − n ≤ i ≤ n, (3)
vj 6= 0 for j = 1, . . . ,m. (4)
The restrictions (2), (3) are necessary and sufficient for the semi-simplicity of the algebra
H(m, 1, n + 1) [1, main theorem]. The restriction (4) is necessary for the maximality of the
commutative set of the Jucys–Murphy elements (as defined in Section 3) [1, Proposition 3.2].
Define the following rational functions in variables a, b with values in H(m, 1, n+ 1):
σi(a, b) := σi + (q − q−1) b
a− b
, i = 1, . . . , n. (5)
The functions σi are called Baxterized elements and the variables a and b are called spectral
parameters. These Baxterized elements satisfy the Yang–Baxter equation with spectral parame-
ters
σi(a, b)σi+1(a, c)σi(b, c) = σi+1(b, c)σi(a, c)σi+1(a, b).
The following formula will be used later
σi(a, b)σi(b, a) =
(a− q2b)(a− q−2b)
(a− b)2
for i = 1, . . . , n. (6)
Let pi, i = 1, . . . ,m, be the eigen-idempotents of τ , pi :=
∏
j:j 6=i
(τ − vj)/(vi − vj), so that
τpi = vipi, pipj = δijpi,
∑
i pi = 1 and τ =
∑
i vipi. Let r be an indeterminate. The resolvent
(r − τ)−1 :=
∑
i(r − vi)−1pi of τ is an element of C(r) ⊗C H(m, 1, n + 1). Define a rational
function τ with values in H(m, 1, n+ 1):
τ(r) :=
(r − v1)(r − v2) · · · (r − vm)
r − τ
=
∑
i
∏
j:j 6=i
(r − vj)
pi ∈ C[r]⊗C H(m, 1, n+ 1). (7)
Remarks. (i) The function τ(r) can be expressed in terms of the complex numbers a0, a1, . . ., am
defined by
(X − v1)(X − v2) · · · (X − vm) = a0 + a1X + · · ·+ amX
m,
where X is an indeterminate. Let ai(r), i = 0, . . . ,m, be the polynomials in r given by
ai(r) = ai + rai+1 + · · ·+ rm−iam for i = 0, . . . ,m. (8)
4 O.V. Ogievetsky and L. Poulain d’Andecy
Using that rai+1(r) = ai(r)− ai, for i = 0, . . . ,m− 1, it is straightforward to verify that
(r − τ)
m−1∑
i=0
ai+1(r)τ
i = a0(r) = (r − v1)(r − v2) · · · (r − vm). (9)
It follows from (9) that
τ(r) = a1(r) + a2(r)τ + · · ·+ am(r)τm−1 =
m−1∑
i=0
ai+1(r)τ
i, (10)
For example, for m = 1, we have τ(r) = 1; for m = 2, we have τ(r) = τ + r− v1− v2; for m = 3,
we have τ(r) = τ2 + (r − v1 − v2 − v3)τ + r2 − r(v1 + v2 + v3) + v1v2 + v1v3 + v2v3.
(ii) The functions τ and σ1 satisfy the following equation
σ1(a, b)τ(a)σ−11 τ(b) = τ(b)σ−11 τ(a)σ1(a, b). (11)
Indeed, due to (6) and (7), the equality (11) is equivalent to
(τ − b)σ1(τ − a)σ1(b, a) = σ1(b, a)(τ − a)σ1(τ − b),
which is proved by a straightforward calculation. The equation (11) is a certain (we leave the
details to the reader) limit of the usual reflection equation with spectral parameters (see, for
example, [10]).
2.2 m-partitions, m-tableaux and generalized hook length
Let λ ` n + 1 be a partition of size n + 1, that is, λ = (λ1, . . . , λl), where λj , j = 1, . . . , l, are
positive integers, λ1 > λ2 > · · · > λl and n+ 1 = λ1 + · · ·+λl. We identify partitions with their
Young diagrams: the Young diagram of λ is a left-justified array of rows of nodes containing λj
nodes in the j-th row, j = 1, . . . , l; the rows are numbered from top to bottom. For a node α in
line x and column y of a Young diagram, we denote α = (x, y) and call x and y the coordinates
of the node.
An m-partition, or a Young m-diagram, of size n+1 is an m-tuple of partitions such that the
sum of their sizes equals n+ 1; e.g. the Young 3-diagram (22,2,2) represents the 3-partition(
(2), (1), (1)
)
of size 4.
We shall understand an m-partition as a set of m-nodes, where an m-node α is a pair {α, k}
consisting of a node α and an integer k = 1, . . . ,m, indicating to which diagram in the m-tuple
the node belongs. The integer k will be called position of the m-node, and we set pos(α) := k.
For an m-partition λ, an m-node α of λ is called removable if the set of m-nodes obtained
from λ by removing α is still an m-partition. An m-node β not in λ is called addable if the set
of m-nodes obtained from λ by adding β is still an m-partition. For an m-partition λ, we denote
by E−(λ) the set of removable m-nodes of λ and by E+(λ) the set of addable m-nodes of λ. For
example, the removable/addable m-nodes (marked with −/+) for the 3-partition (22,2,2) are(
− +
+
,
− +
+
,
− +
+
)
.
Let λ be an m-diagram of size n+1. A standard m-tableau of shape λ is obtained by placing
the numbers 1, . . . , n + 1 in the m-nodes of the diagrams of λ in such a way that the numbers
in the nodes ascend along rows and down columns in every diagram. The size of a standard
m-tableau is the size of its shape.
Fusion Procedure for Cyclotomic Hecke Algebras 5
Let q, v1, . . . , vm be the parameters of the cyclotomic Hecke algebra H(m, 1, n + 1) and let
α = {α, k} be anm-node with α = (x, y). We denote by cc(α) the classical content of the node α,
cc(α) := y−x, and by c(α) the quantum content of the m-node α, c(α) := vkq
2cc(α) = vkq
2(y−x).
For a standard m-tableau T of shape λ let αi be the m-node of T occupied by the number i,
i = 1, . . . , n+1; we set c(T |i) := c(αi), cc(T |i) := cc(αi) and pos(T |i) := pos(αi). For example,
for the standard 3-tableau T =
(
1 3 , 2 , 4
)
we have
c(T |1) = v1, c(T |2) = v2, c(T |3) = v1q
2 and c(T |4) = v3,
cc(T |1) = 0, cc(T |2) = 0, cc(T |3) = 1 and cc(T |4) = 0,
pos(T |1) = 1, pos(T |2) = 2, pos(T |3) = 1 and pos(T |4) = 3,
Generalized hook length. The hook of a node α of a partition λ is the set of nodes of λ
consisting of the node α and the nodes which lie either under α in the same column or to the
right of α in the same row; the hook length hλ(α) of α is the cardinality of the hook of α. We
extend this definition to m-nodes. For an m-node α = {α, k} of an m-partition λ, the hook
length of α in λ, which we denote by hλ(α), is the hook length of the node α in the k-th
partition of λ.
Let λ be an m-partition. For j = 1, . . . ,m, let lλ,x,j be the number of nodes in the line x of
the j-th diagram of λ, and cλ,y,j be the number of nodes in the column y of the j-th diagram
of λ. The hook length of an m-node α = {(x, y), k} of λ can be rewritten as
hλ(α) = lλ,x,k + cλ,y,k − x− y + 1.
Define the generalized hook length of α (see also [5]) by
h
(j)
λ (α) := lλ,x,j + cλ,y,k − x− y + 1 for j = 1, . . . ,m;
in particular, h
(k)
λ (α) = hλ(α) is the usual hook length.
For an m-partition λ, we define
Fλ =
∏
α∈λ
qcc(α)
[hλ(α)]q
∏
k = 1, . . . ,m
k 6= pos(α)
q−cc(α)
vpos(α)q
−h(k)λ (α) − vkqh
(k)
λ (α)
, (12)
where [j]q := qj−1 + qj−3 + · · · + q−j+1 for a non-negative integer j. Under the restrictions
(2)–(4), the number Fλ is well defined for any m-partition λ of size less or equal to n+ 1 since
hλ(α) ≤ n+ 1 and h
(k)
λ (α) ≤ n if k 6= pos(α) for any α ∈ λ.
3 Idempotents and Jucys–Murphy elements of H(m, 1, n+ 1)
In this section we recall the definition and some properties, from [2], of the Jucys–Murphy
elements of the algebra H(m, 1, n + 1), together with some facts about an explicit realization
of the irreducible representations of H(m, 1, n + 1). We then derive, in the same spirit as
in [12], an inductive formula, that we will use in the next section, for the primitive idempotents
corresponding to this realization.
The Jucys–Murphy elements Ji, i = 1, . . . , n + 1, of the algebra H(m, 1, n + 1) are defined
by the following initial condition and recursion
J1 = τ and Ji+1 = σiJiσi, i = 1, . . . , n.
6 O.V. Ogievetsky and L. Poulain d’Andecy
We recall that, under the restrictions (2)–(4), the elements Ji, i = 1, . . . , n+ 1, form a maximal
commutative set (that is, generate a maximal commutative subalgebra) of H(m, 1, n + 1) [2,
Proposition 3.17]. Recall also that
Jiσk = σkJi for k 6= i− 1, i.
The isomorphism classes of irreducible C-representations of H(m, 1, n + 1) are in bijection
with the set of m-partitions of size n+ 1. We use the labeling and the explicit realization of the
irreducible representations of H(m, 1, n+ 1) given in [2]. Namely, for any m-partition λ of size
n + 1, the irreducible representation Vλ of H(m, 1, n + 1) corresponding to λ has a basis {vT }
indexed by the set of standard m-tableaux of shape λ, and is characterized (up to a diagonal
change of basis) by the fact that the Jucys–Murphy elements act diagonally by
Ji(vT ) = c(T |i)vT , i = 1, . . . , n+ 1.
We will not need the explicit formulas for the action of the generators of H(m, 1, n+ 1) on basis
elements vT .
The restriction of irreducible representations of H(m, 1, n + 1) to H(m, 1, n) is determined
by inclusion of m-partitions, that is, for H(m, 1, n)-modules, we have
Vλ ∼=
⊕
µ⊂λ, µ of size n
Vµ. (13)
Moreover, in this decomposition, Vµ is the space spanned by the basis vectors vT , with T such
that the standard m-tableau (of size n) obtained by removing from T the m-node containing
n+ 1 is of shape µ.
For a standard m-tableau T of size n + 1, we denote by ET the primitive idempotent of
H(m, 1, n+ 1) corresponding to vT , uniquely defined by ET vT ′ = δT T ′vT . The results recalled
above imply that {ET }, where T runs through the set of standard m-tableaux of size n+ 1, is
a complete set of pairwise orthogonal primitive idempotents of H(m, 1, n + 1). Moreover, we
have by construction
JiET = ET Ji = c(T |i)ET , i = 1, . . . , n+ 1. (14)
Due to the maximality of the commutative set formed by the Jucys–Murphy elements, the
idempotent ET can be expressed in terms of the elements Ji, i = 1, . . . , n + 1. Let γ be the
m-node of T containing the number n+ 1. As the m-tableau T is standard, the m-node γ of λ
is removable. Let U be the standard m-tableau obtained from T by removing the m-node γ,
and let µ be the shape of U . By (13) and (14), the inductive formula for ET in terms of the
Jucys–Murphy elements reads
ET = EU
∏
β :
β∈E+(µ)
β 6=γ
Jn+1 − c(β)
c(γ)− c(β)
,
with the initial condition: EU0 = 1 for the unique m-tableau U0 of size 0. Here EU is considered
as an element of the algebra H(m, 1, n+ 1). Note that, due to the restrictions (2)–(4), we have
c(β) 6= c(γ) for any β ∈ E+(µ) such that β 6= γ.
Let {T1, . . . , Ta} be the set of pairwise different standard m-tableaux which can be obtained
from U by adding an m-node with number n+ 1. As a consequence of (13), we have the formula
EU =
a∑
i=1
ETi . (15)
Fusion Procedure for Cyclotomic Hecke Algebras 7
The element Jn+1 satisfies a polynomial equation of finite order so its resolvent is well defined
and
EU
u− c(T |n+ 1)
u− Jn+1
is a rational function in an indeterminate u with values in H(m, 1, n + 1). Replacing EU by
the right-hand side of (15) and using (14), we obtain that this function is non-singular at
u = c(T |n+ 1) and moreover, due to the restrictions (2)–(4),
EU
u− c(T |n+ 1)
u− Jn+1
∣∣∣
u=c(T |n+1)
= ET . (16)
4 Fusion formula for the algebra H(m, 1, n+ 1)
In this section, we prove, in Theorem 1 below, the fusion formula for the primitive idempo-
tents ET . We use the inductive formula (16) for ET .
Let φk, for k = 1, . . . , n + 1, be the rational functions in variables u1, . . . , uk with values in
the algebra H(m, 1, n+ 1) defined by φ1(u1) := τ(u1) and, for k = 1, . . . , n,
φk+1(u1, . . . , uk, uk+1) := σk(uk+1, uk)φk(u1, . . . , uk−1, uk+1)σ
−1
k
= σk(uk+1, uk)σk−1(uk+1, uk−1) . . . σ1(uk+1, u1)τ(uk+1)σ
−1
1 . . . σ−1k−1σ
−1
k .
Define the following rational function Φ in variables u1, . . . , un+1 with values in H(m, 1, n+ 1):
Φ(u1, . . . , un+1) := φn+1(u1, . . . , un, un+1)φn(u1, . . . , un−1, un) · · ·φ1(u1).
Let λ be an m-partition of size n + 1 and T a standard m-tableau of shape λ. For i =
1, . . . , n+ 1, we set ci := c(T |i).
Theorem 1. The idempotent ET corresponding to the standard m-tableau T of shape λ can be
obtained by the following consecutive evaluations
ET = FλΦ(u1, . . . , un+1)
∣∣
u1=c1
· · ·
∣∣
un=cn
∣∣
un+1=cn+1
,
with Fλ defined in (12).
We will prove the theorem in this section in several steps.
Until the end of the text, γ and δ denote the m-nodes of T containing the numbers n+1 and
n respectively; U is the standard m-tableau obtained from T by removing γ, and µ is the shape
of U ; also, W is the standard m-tableau obtained from U by removing the m-node δ and ν is
the shape of W.
For a standard m-tableau V of size N , we define the following rational function in a variable u
with complex values
FV(u) :=
u− c(V|N)
(u− v1) · · · (u− vm)
N−1∏
i=1
(
u− c(V|i)
)2(
u− q2c(V|i)
)(
u− q−2c(V|i)
) ; (17)
by convention, FV(u) := u−c(V|1)
(u−v1)···(u−vm) for N = 1.
Proposition 2. We have
FT (u)φn+1(c1, . . . , cn, u)EU =
u− cn+1
u− Jn+1
EU . (18)
8 O.V. Ogievetsky and L. Poulain d’Andecy
Proof. We prove (18) by induction on n. As J1 = τ , we have by (7)
u− c1
u− J1
=
u− c1
(u− v1) · · · (u− vm)
τ(u),
which verifies the basis of induction (n = 0).
We have: EWEU = EU and EW commutes with σn. Rewrite the left-hand side of (18) as
FT (u)σn(u, cn) · φn(c1, . . . , cn−1, u)EW · σ−1n EU .
By the induction hypothesis we have for the left-hand side of (18)
FT (u)
(
FU (u)
)−1
σn(u, cn)
u− cn
u− Jn
σ−1n EU .
Since Jn+1 commutes with EU , the equality (18) is equivalent to
FT (u)
(
FU (u)
)−1
(u− cn)σ−1n (u− Jn+1)EU
=
(u− cn+1)(u− cn)2
(u− q2cn)(u− q−2cn)
(u− Jn)σn(cn, u)EU (19)
(the inverse of σn(u, cn) is calculated with the help of (6)). By (17),
FT (u)
(
FU (u)
)−1
(u− cn) = (u− cn+1)
(u− cn)2
(u− q2cn)(u− q−2cn)
.
Therefore, to prove (19), it remains to show that
σ−1n (u− Jn+1)EU = (u− Jn)σn(cn, u)EU . (20)
Replacing Jn+1 by σnJnσn, we write the left-hand side of (20) in the form(
uσ−1n − Jnσn
)
EU . (21)
As JnEU = cnEU , the right-hand side of (20) is(
uσn − Jnσn +
(
q − q−1
)
(u− cn)
u
cn − u
)
EU
and thus coincides with (21). �
To prove Theorem 1, we need the following information about the behavior of the rational
function FT (u) at u = cn+1.
Proposition 3. The rational function FT (u) is non-singular at u = cn+1, and moreover
FT (cn+1) = Fλ F−1µ ,
We will prove this proposition with the help of Lemmas 4 and 5 below, which involve the
combinatorics of multi-partitions.
Lemma 4. We have
FT (u) = (u− cn+1)
∏
β∈E−(µ)
(u− c(β))
∏
α∈E+(µ)
(u− c(α))−1. (22)
Fusion Procedure for Cyclotomic Hecke Algebras 9
Proof. The proof is by induction on n. For n = 0, we have
FT (u) =
u− c1
(u− v1) · · · (u− vm)
,
which is equal to the right-hand side of (22).
Now, for n > 0, we rewrite (17) for V = T as
FT (u) =
u− cn+1
(u− v1) · · · (u− vm)
(u− cn)2
(u− q2cn)(u− q−2cn)
n−1∏
i=1
(u− ci)2
(u− q2ci)(u− q−2ci)
.
Using the induction hypothesis, we obtain
FT (u) =
(u− cn+1)(u− cn)2
(u− q2cn)(u− q−2cn)
∏
β∈E−(ν)
(u− c(β))
∏
α∈E+(ν)
(u− c(α))−1. (23)
Denote by δt and δb the m-nodes which are, respectively, just above and just below δ, δl and δr
the m-nodes which are, respectively, just on the left and just on the right of δ; it might happen
that one of the coordinates of δt (or δl) is not positive, and in this situation, by definition,
δt /∈ E−(ν) (or δl /∈ E−(ν)). It is straightforward to see that:
• If δt, δl /∈ E−(ν) then
E−(µ) = E−(ν) ∪ {δ} and E+(µ) = (E+(ν) ∪ {δb, δr}) \{δ} .
• If δt ∈ E−(ν) and δl /∈ E−(ν) then
E−(µ) = (E−(ν) ∪ {δ}) \{δt} and E+(µ) = (E+(ν) ∪ {δb}) \{δ}.
• If δt /∈ E−(ν) and δl ∈ E−(ν) then
E−(µ) = (E−(ν) ∪ {δ}) \{δl} and E+(µ) = (E+(ν) ∪ {δr}) \{δ}.
• If δt, δl ∈ E−(ν) then
E−(µ) = (E−(ν) ∪ {δ}) \{δt, δl} and E+(µ) = E+(ν)\{δ}.
In each case, using that c(δt) = c(δr) = q2cn and c(δb) = c(δl) = q−2cn, it follows that the
right-hand side of (23) is equal to
(u− cn+1)
∏
β∈E−(µ)
(u− c(β))
∏
α∈E+(µ)
(u− c(α))−1,
which establishes the formula (22). �
Lemma 5. We have∏
β∈E−(µ)
(cn+1 − c(β))
∏
α∈E+(µ)\{γ}
(cn+1 − c(α))−1 = FλF
−1
µ .
10 O.V. Ogievetsky and L. Poulain d’Andecy
Proof. 1. The definition (12), for a partition λ, reduces to
Fλ :=
∏
α∈λ
qcc(α)
[hλ(α)]q
.
The Lemma 5 for a partition λ is established in [8, Lemma 3.2].
2. Set k = pos(γ). Define, for an m-partition θ,
F̃θ :=
∏
α∈θ
qcc(α)
[hθ(α)]q
,
and, for j = 1, . . . ,m such that j 6= k,
F
(j)
θ :=
∏
α ∈ θ
pos(α) = k
q−cc(α)
vkq
−h(j)θ (α) − vjqh
(j)
θ (α)
∏
α ∈ θ
pos(α) = j
q−cc(α)
vjq
−h(k)θ (α) − vkqh
(k)
θ (α)
. (24)
By (12), we have
Fθ = F̃θ
∏
j = 1, . . . ,m
j 6= k
F
(j)
θ . (25)
Fix j ∈ {1, . . . ,m} such that j 6= k. We shall show that∏
β ∈ E−(µ)
pos(β) = j
(cn+1 − c(β))
∏
α ∈ E+(µ)\{γ}
pos(α) = j
(cn+1 − c(α))−1 = F
(j)
λ
(
F
(j)
µ
)−1
. (26)
Let p1 < p2 < · · · < ps be positive integers such that the j-th partition of µ is (µ1, . . . , µps)
with
µ1 = · · · = µp1 > µp1+1 = · · · = µp2 > · · · > µps−1+1 = · · · = µps > 0.
We set p0 := 0, ps+1 := +∞ and µps+1 := 0. Assume that the m-node γ lies in the line x and
column y. The left-hand side of (26) is equal to
s∏
b=1
(
vkq
2(y−x) − vjq2(µpb−pb)
) s+1∏
b=1
(
vkq
2(y−x) − vjq2(µpb−pb−1)
)−1
. (27)
The factors in the product (24) correspond to m-nodes of an m-partition. The m-nodes lying
neither in the column y of the k-th diagrams (of λ or µ) nor in the line x of the j-th diagrams
do not contribute to the right-hand side of (26). Let t ∈ {0, . . . , s} be such that pt < x ≤ pt+1.
The contribution from the m-nodes in the column y and lines 1, . . . , pt of the k-th diagrams is
t∏
b=1
pb∏
a=pb−1+1
vkq
−(µpb−y+x−a) − vjq(µpb−y+x−a)
vkq
−(µpb−y+x−a+1) − vjq(µpb−y+x−a+1)
;
the contribution from the m-nodes in the column y and lines pt + 1, . . . , x of the k-th diagrams
is
x−1∏
a=pt+1
(
vkq
−(µpt+1−y+x−a) − vjq(µpt+1−y+x−a)
vkq
−(µpt+1−y+x−a+1) − vjq(µpt+1−y+x−a+1)
)
q−cc(γ)
vkq
−(µpt+1−y+1) − vjq(µpt+1−y+1)
.
Fusion Procedure for Cyclotomic Hecke Algebras 11
The contribution from the m-nodes lying in the line x of the j-th diagrams is
s∏
b=t+1
µpb∏
a=µpb+1
+1
vjq
−(y−a+pb−x) − vkq(y−a+pb−x)
vjq−(y−a+pb−x+1) − vkq(y−a+pb−x+1)
.
After straightforward simplifications, we obtain for the right-hand side of (26)
qx−y
s∏
b=1
(
vkq
−(µpb−y+x−pb) − vjq(µpb−y+x−pb)
)
×
s+1∏
b=1
(
vkq
−(µpb−y+x−pb−1) − vjq(µpb−y+x−pb−1)
)−1
. (28)
The comparison of (27) and (28) concludes the proof of the formula (26).
3. The assertion of the lemma is a consequence of the formulas (25), (26) together with the
part 1 of the proof. �
Proof of the Proposition 3. The formula (22) shows that the rational function FT (u) is non-
singular at u = cn+1, and moreover
FT (cn+1) =
∏
β∈E−(µ)
(cn+1 − c(β))
∏
α∈E+(µ)\{γ}
(cn+1 − c(α))−1 .
We use the Lemma 5 to conclude the proof of the proposition. �
Proof of Theorem 1. The theorem follows, by induction on n, from the formula (16) together
with Propositions 2 and 3. �
Example. Consider, for m = 2, the standard 2-tableau
(
1 3 , 2
)
. The idempotent of the
algebra H(2, 1, 3) corresponding to this standard 2-tableau reads, by the Theorem 1,
σ2
(
v1q
2, v2
)
σ1
(
v1q
2, v1
)
τ
(
v1q
2
)
σ−11 σ−12 σ1(v2, v1)τ(v2)σ
−1
1 τ(v1)(
q + q−1
)(
v1q−1 − v2q
)
(v1 − v2)
(
v2q−2 − v1q2
) .
5 Remarks on the classical limit
Recall that the group ring CG(m, 1, n + 1) of the complex reflection group G(m, 1, n + 1) is
obtained by taking the classical limit: q 7→ ±1 and vi 7→ ξi, i = 1, . . . ,m, where {ξ1, . . . , ξm}
is the set of distinct m-th roots of unity. The “classical limit” of the generators τ, σ1, . . . , σn of
H(m, 1, n+ 1) we denote by t, s1, . . . , sn.
1. Consider the Baxterized elements (5) with spectral parameters of the form vpq
2a and
vp′q
2a′ with p, p′ ∈ {1, . . . ,m}. One directly finds that
lim
q→1
lim
vi→ξi
σi
(
vpq
2a, vp′q
2a′
)
= si +
δp,p′
a− a′
. (29)
For the Artin generators s̃1, . . . , s̃n of the symmetric group Sn+1, the standard Baxterized ele-
ments are given by the rational functions
s̃i +
1
a− a′
for i = 1, . . . , n.
12 O.V. Ogievetsky and L. Poulain d’Andecy
In view of (29), we define generalized Baxterized elements for the group G(m, 1, n + 1) as the
following functions
si(p, p
′, a, a′) := si +
δp,p′
a− a′
for i = 1, . . . , n. (30)
These elements satisfy the following Yang–Baxter equation with spectral parameters
si(p, p
′, a, a′)si+1(p, p
′′, a, a′′)si(p
′, p′′, a′, a′′)
= si+1(p
′, p′′, a′, a′′)si(p, p
′′, a, a′′)si+1(p, p
′, a, a′).
The Baxterized elements (30) have been used in [14] for a fusion procedure for the complex
reflection group G(m, 1, n+ 1).
2. It is immediate that
lim
vi→ξi
a0(r) = rm − 1 and lim
vi→ξi
ai(r) = rm−i for i = 1, . . . ,m,
where ai(r), i = 0, . . . ,m, are defined in (8). It follows from (10) that
lim
vi→ξi
τ(r) =
m−1∑
i=0
rm−1−iti. (31)
The rational function t defined by t(r) := 1
m
m−1∑
i=0
rm−iti with values in CG(m, 1, n+ 1) was used
in [14] for a fusion procedure for the complex reflection group G(m, 1, n+ 1).
3. Define, for an m-partition λ,
fλ :=
(∏
α∈λ
hλ(α)
)−1
.
The classical limit of Fλ is proportional to fλ. More precisely, we have
lim
q→1
lim
vi→ξi
Fλ = xλfλ, where xλ =
1
mn
∏
α∈λ
ξpos(α). (32)
The formula (32) is obtained directly from (12) since
m∏
i = 1
i 6= k
(ξk − ξi) = m/ξk for k = 1, . . . ,m.
4. Using formulas (29), (31) and (32), it is straightforward to check that the classical limit of
the fusion procedure for H(m, 1, n+1) given by the Theorem 1 leads to the fusion procedure [14]
for the group G(m, 1, n+ 1). Also, for m = 1, Theorem 1 coincides with the fusion procedure [8]
for the Hecke algebra and, in the classical limit, with the fusion procedure [12] for the symmetric
group.
Acknowledgements
We thank the anonymous referees for valuable suggestions.
Fusion Procedure for Cyclotomic Hecke Algebras 13
References
[1] Ariki S., On the semi-simplicity of the Hecke algebra of (Z/rZ) oSn, J. Algebra 169 (1994), 216–225.
[2] Ariki S., Koike K., A Hecke algebra of (Z/rZ) oSn and construction of its irreducible representations, Adv.
Math. 106 (1994), 216–243.
[3] Broué M., Malle G., Zyklotomische Heckealgebren. Représentations unipotentes génériques et blocs des
groupes réductifs finis, Astérisque 212 (1993), 119–189.
[4] Cherednik I.V., A new interpretation of Gel’fand–Tzetlin bases, Duke Math. J. 54 (1987), 563–577.
[5] Chlouveraki M., Jacon N., Schur elements for the Ariki–Koike algebra and applications, J. Algebraic Combin.
35 (2012), 291–311, arXiv:1105.5910.
[6] Geck M., Iancu L., Malle G., Weights of Markov traces and generic degrees, Indag. Math. (N.S.) 11 (2000),
379–397.
[7] Isaev A.P., Molev A.I., Ogievetsky O.V., Idempotents for Birman–Murakami–Wenzl algebras and reflection
equation, arXiv:1111.2502.
[8] Isaev A.P., Molev A.I., Os’kin A.F., On the idempotents of Hecke algebras, Lett. Math. Phys. 85 (2008),
79–90, arXiv:0804.4214.
[9] Isaev A.P., Ogievetsky O.V., On Baxterized solutions of reflection equation and integrable chain models,
Nuclear Phys. B 760 (2007), 167–183, math-ph/0510078.
[10] Kulish P.P., Yang–Baxter equation and reflection equations in integrable models, in Low-Dimensional Mo-
dels in Statistical Physics and Quantum Field Theory (Schladming, 1995), Lecture Notes in Phys., Vol. 469,
Springer, Berlin, 1996, 125–144.
[11] Mathas A., Matrix units and generic degrees for the Ariki–Koike algebras, J. Algebra 281 (2004), 695–730,
math.RT/0108164.
[12] Molev A.I., On the fusion procedure for the symmetric group, Rep. Math. Phys. 61 (2008), 181–188,
math.RT/0612207.
[13] Ogievetsky O.V., Poulain d’Andecy L., On representations of cyclotomic Hecke algebras, Modern Phys.
Lett. A 26 (2011), 795–803, arXiv:1012.5844.
[14] Ogievetsky O.V., Poulain d’Andecy L., Fusion formula for Coxeter groups of type B and complex reflection
groups G(m, 1, n), arXiv:1111.6293.
[15] Ogievetsky O.V., Poulain d’Andecy L., Induced representations and traces for chains of affine and cyclotomic
Hecke algebras, arXiv:1312.6980.
http://dx.doi.org/10.1006/jabr.1994.1280
http://dx.doi.org/10.1006/aima.1994.1057
http://dx.doi.org/10.1006/aima.1994.1057
http://dx.doi.org/10.1215/S0012-7094-87-05423-8
http://dx.doi.org/10.1007/s10801-011-0314-4
http://arxiv.org/abs/1105.5910
http://dx.doi.org/10.1016/S0019-3577(00)80005-1
http://arxiv.org/abs/1111.2502
http://dx.doi.org/10.1007/s11005-008-0254-7
http://arxiv.org/abs/0804.4214
http://dx.doi.org/10.1016/j.nuclphysb.2006.09.013
http://arxiv.org/abs/math-ph/0510078
http://dx.doi.org/10.1007/BFb0102555
http://dx.doi.org/10.1016/j.jalgebra.2004.07.021
http://arxiv.org/abs/math.RT/0108164
http://dx.doi.org/10.1016/S0034-4877(08)80005-5
http://arxiv.org/abs/math.RT/0612207
http://dx.doi.org/10.1142/S0217732311035377
http://dx.doi.org/10.1142/S0217732311035377
http://arxiv.org/abs/1012.5844
http://arxiv.org/abs/1111.6293
http://arxiv.org/abs/1312.6980
1 Introduction
2 Definitions
2.1 Cyclotomic Hecke algebra and Baxterized elements
2.2 m-partitions, m-tableaux and generalized hook length
3 Idempotents and Jucys–Murphy elements of H(m,1,n+1)
4 Fusion formula for the algebra H(m,1,n+1)
5 Remarks on the classical limit
References
|