Nontrivial Deformation of a Trivial Bundle
The SU(2)-prolongation of the Hopf fibration S³→S² is a trivializable principal SU(2)-bundle. We present a noncommutative deformation of this bundle to a quantum principal SUq(2)-bundle that is not trivializable. On the other hand, we show that the SUq(2)-bundle is piecewise trivializable with respe...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146823 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Nontrivial Deformation of a Trivial Bundle / P.M. Hajac, B. Zieliński // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146823 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468232019-02-12T01:24:50Z Nontrivial Deformation of a Trivial Bundle Hajac, P.M. Zieliński, B. The SU(2)-prolongation of the Hopf fibration S³→S² is a trivializable principal SU(2)-bundle. We present a noncommutative deformation of this bundle to a quantum principal SUq(2)-bundle that is not trivializable. On the other hand, we show that the SUq(2)-bundle is piecewise trivializable with respect to the closed covering of S² by two hemispheres intersecting at the equator. 2014 Article Nontrivial Deformation of a Trivial Bundle / P.M. Hajac, B. Zieliński // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58B32 DOI:10.3842/SIGMA.2014.031 http://dspace.nbuv.gov.ua/handle/123456789/146823 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The SU(2)-prolongation of the Hopf fibration S³→S² is a trivializable principal SU(2)-bundle. We present a noncommutative deformation of this bundle to a quantum principal SUq(2)-bundle that is not trivializable. On the other hand, we show that the SUq(2)-bundle is piecewise trivializable with respect to the closed covering of S² by two hemispheres intersecting at the equator. |
format |
Article |
author |
Hajac, P.M. Zieliński, B. |
spellingShingle |
Hajac, P.M. Zieliński, B. Nontrivial Deformation of a Trivial Bundle Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Hajac, P.M. Zieliński, B. |
author_sort |
Hajac, P.M. |
title |
Nontrivial Deformation of a Trivial Bundle |
title_short |
Nontrivial Deformation of a Trivial Bundle |
title_full |
Nontrivial Deformation of a Trivial Bundle |
title_fullStr |
Nontrivial Deformation of a Trivial Bundle |
title_full_unstemmed |
Nontrivial Deformation of a Trivial Bundle |
title_sort |
nontrivial deformation of a trivial bundle |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146823 |
citation_txt |
Nontrivial Deformation of a Trivial Bundle / P.M. Hajac, B. Zieliński // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT hajacpm nontrivialdeformationofatrivialbundle AT zielinskib nontrivialdeformationofatrivialbundle |
first_indexed |
2025-07-11T00:41:49Z |
last_indexed |
2025-07-11T00:41:49Z |
_version_ |
1837309120506494976 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 10 (2014), 031, 7 pages
Nontrivial Deformation of a Trivial Bundle?
Piotr M. HAJAC †‡ and Bartosz ZIELIŃSKI §
† Instytut Matematyczny, Polska Akademia Nauk, ul. Śniadeckich 8, 00-956 Warszawa, Poland
E-mail: pmh@impan.pl
URL: http://www.impan.pl/~pmh/
‡ Katedra Metod Matematycznych Fizyki, Uniwersytet Warszawski,
ul. Hoża 74, 00-682 Warszawa, Poland
‡ Department of Computer Science, Faculty of Physics and Applied Informatics,
University of Lódź, Pomorska 149/153 90-236 Lódź, Poland
E-mail: bzielinski@uni.lodz.pl
Received October 29, 2013, in final form March 03, 2014; Published online March 27, 2014
http://dx.doi.org/10.3842/SIGMA.2014.031
Abstract. The SU(2)-prolongation of the Hopf fibration S3 → S2 is a trivializable principal
SU(2)-bundle. We present a noncommutative deformation of this bundle to a quantum
principal SUq(2)-bundle that is not trivializable. On the other hand, we show that the
SUq(2)-bundle is piecewise trivializable with respect to the closed covering of S2 by two
hemispheres intersecting at the equator.
Key words: quantum prolongations of principal bundles; piecewise trivializable quantum
principal bundles
2010 Mathematics Subject Classification: 58B32
Dedicated to Marc A. Rieffel on the occasion of his 75th birthday
1 Introduction and preliminaries
The goal of this paper is to show how a noncommutative deformation can turn a trivializable prin-
cipal bundle into a nontrivializable quantum principal bundle. This is a peculiar phenomenon
because noncommutative deformations usually preserve basic topological features of deformed
objects, e.g. K-groups.
On the other hand, this paper exemplifies the general theory of piecewise trivial principal
comodule algebras developed in [7, 9]. Therefore we follow the notation, conventions and general
setup employed therein. To make our exposition self-contained and easy to read, we often recall
basic concepts and definitions.
Let π : X →M be a principal G-bundle over M , and G′ be a subgroup of G. A G′-reduction
of X → M is a subbundle X ′ ⊆ X over M that is a principal G′-bundle over M via the
restriction of the G-action on X. Many important structures on manifolds can be formulated
as reductions of their frame bundles. For instance, an orientation, a volume form and a metric
on a manifold M correspond to reductions of the frame bundle FM to a GL+(n,R), SL(n,R)
and O(n,R)-bundle, respectively. See [10] for more details.
An operation inverse to a reduction of a principal bundle is a prolongation of a principal
bundle. Let π : X → M be a principal G′-bundle over M , and let G′ be a subgroup of G.
Define X ×G′ G := (X × G)/∼, where (x, g) ∼ (xh, h−1g), for all x ∈ X, g ∈ G and h ∈ G′.
?This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in
honor of Marc A. Rieffel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html
mailto:pmh@impan.pl
http://www.impan.pl/~pmh/
mailto:bzielinski@uni.lodz.pl
http://dx.doi.org/10.3842/SIGMA.2014.031
http://www.emis.de/journals/SIGMA/Rieffel.html
2 P.M. Hajac and B. Zieliński
Then
π̂ : X ×G′ G −→M, [x, g] 7−→ π(x),
is a G-bundle called the G-prolongation of X, with the G-action given by [x, g]h := [x, gh]. The
bundle X →M is a G′-reduction of X ×G′ G→M .
An interesting special case is when X = G and M = G/G′, that is the homogenous bundle
case. It is easy to see that G ×G′ G → G/G′ is always a trivializable bundle. Indeed, the
following G-equivariant bundle maps provide an explicit isomorphism and its inverse:
f : G×G′ G −→ G/G′ ×G, [g1, g2] 7−→ ([g1], g1g2),
f−1 : G/G′ ×G −→ G×G′ G, ([g], h) 7−→ [g, g−1h].
A quantum-group version of the trivializability of G ×G′ G → G/G′ can be easily checked
mimicking the classical argument. In particular, the SUq(2)-prolongation
SUq(2) ×
U(1)
SUq(2) −→ S2
q
of the standard quantum Hopf fibration is trivializable [5, p. 1104]. However, as the main result
of this paper, we show that the SUq(2)-prolongation
SU(2) ×
U(1)
SUq(2) −→ S2
of the classical Hopf fibration is not trivializable.
1.1 Notation
We work over the field C of complex numbers. The unadorned tensor product stands for the
tensor product over this field. The comultiplication, counit and the antipode of a Hopf algebra H
are denoted by ∆, ε and S, respectively. Our standing assumption is that S is invertible.
A right H-comodule algebra P is a unital associative algebra equipped with an H-coaction
∆P : P → P ⊗H that is an algebra homomorphism. For a comodule algebra P , we call
P coH := {p ∈ P |∆P (p) = p⊗ 1}
the subalgebra of coaction-invariant elements in P . A left coaction on V is denoted by V ∆. For
comultiplications and coactions, we often employ the Heynemann–Sweedler notation with the
summation symbol suppressed:
∆(h) =: h(1) ⊗ h(2), ∆P (p) =: p(0) ⊗ p(1), V ∆(v) =: v(−1) ⊗ v(0).
1.2 Reductions and prolongations of principal comodule algebras
Definition 1 ([4]). Let H be a Hopf algebra, P be a right H-comodule algebra and let B :=
P coH be the coaction-invariant subalgebra. The comodule algebra P is called principal iff:
1) P⊗BP 3 p⊗ q 7→ can(p⊗ q) := pq(0) ⊗ q(1) ∈ P ⊗H is bijective,
2) there exists a left B-linear right H-colinear splitting of the multiplication map B⊗P → P ,
3) the antipode of H is bijective.
Nontrivial Deformation of a Trivial Bundle 3
Here (1) is the Hopf–Galois (freeness) condition, (2) means equivariant projectivity of P ,
and (3) ensures a left-right symmetry of the definition (everything can be re-written for left
comodule algebras).
A particular class of principal comodule algebras is distinguished by the existence of a clea-
ving map. A cleaving map is defined as a unital right H-colinear convolution-invertible map
j : H → P . Comodule algebras admitting a cleaving map are called cleft. One can show that
a cleaving map is automatically injective. However, in general, they are not algebra homomor-
phisms.
If j : H → P is a right H-colinear algebra homomorphism, then it is automatically convolu-
tion-invertible and unital. A cleft comodule algebra admitting a cleaving map that is an algebra
homomorphism is called a smash product. All commutative smash products reduce to the tensor
algebra P coH ⊗H, so that smash products play the role of trivial bundles. Here a cleaving map
is simply given by j(h) := 1 ⊗ h. A cleaving map defines a left action of H on P coH making
it a left H-module algebra: h . p := j(h(1))pj
−1(h(2)). Conversely, if B is a left H-module
algebra, one can construct a smash product B oH by equipping the vector space B ⊗H with
the multiplication
(a⊗ h)(b⊗ k) := a (h(1) . b)⊗ h(2) k, a, b ∈ B, h, k ∈ H,
and coaction ∆BoH := id⊗∆. Then again a cleaving map is simply given by j(h) := 1⊗ h.
Definition 2 ([6, 8, 12]). Let P be a principal H-comodule algebra and J be a Hopf ideal
of H such that H is a principal left H/J-comodule algebra. We say that an ideal I of P is
a J-reduction of P if and only if the following conditions are satisfied:
1) I is an H/J-subcomodule of P ,
2) P/I with the induced coaction is a principal H/J-comodule algebra,
3) (P/I)coH/J = P coH .
Loosely speaking, J plays the role of the ideal of functions vanishing on a subgroup and I the
ideal of functions vanishing on a subbundle. Thus H/J works as the algebra of the reducing sub-
group, and P/I as the algebra of the reduced bundle. The coaction-invariant subalgebra P coH
remains intact – the base space of a subbundle coincides with the base space of the bundle.
If M is a right comodule over a coalgebra C and N is a left C-comodule, then we define their
cotensor product as
M2
C
N := {t ∈M ⊗N | (∆M ⊗ id)(t) = (id⊗ N∆)(t)}.
In particular, for a principal H ′-comodule algebra P and a Hopf algebra epimorphism H
π→ H ′
making H a left H ′-comodule in the obvious way, one proves that the cotensor product P2H′H
is a principal H-comodule algebra with the H-coaction defined by id⊗∆. We call the principal
comodule algebra P2H′H the H-prolongation of P .
1.3 Piecewise triviality
Definition 3 (cf. [7, Definition 3.6]). A family of surjective algebra homomorphisms
{πi : P → Pi}i∈{1,...,N}, N ∈ N \ {0}, is called a covering iff
1)
⋂
i∈{1,...,N}Kerπi = 0,
2) The family of ideals (Kerπi)i∈{1,...,N} generates a distributive lattice with + and ∩ as meet
and join respectively.
4 P.M. Hajac and B. Zieliński
We recall now (cf. [7, Definition 3.8]) a quantum version of the notion of piecewise triviality
of principal bundles (like local triviality, but with respect to closed subsets).
Definition 4. An H-comodule algebra P is called piecewise trivial iff there exists a family
{πi : P → Pi}i∈{1,...,N}, N ∈ N \ {0}, of surjective H-colinear maps such that:
1) the restrictions πi|P coH : P coH → P coH
i form a covering,
2) the Pi’s are smash products (Pi ∼= P coH
i oH as H comodule algebras).
Assume also that the antipode of H is bijective. Then, as smash products are principal,
it follows from [7, Theorem 3.3] that piecewise trivial comodule algebras are automatically
principal. To emphasize this fact and stay in touch with the classical terminology, we frequently
use the phrase “piecewise trivial principal comodule algebra”. Note also that the consequence
of principality of P is that {πi : P → Pi}i∈{1,...,N} is a covering of P (see [9]).
Definition 5 ([9]). Let {πi : P → Pi}i∈{1,...,N}, N ∈ N \ {0}, be a covering by right
H-colinear maps of a principal right H-comodule algebra P such that the restrictions
πi|P coH : P coH → P coH
i also form a covering. A piecewise trivialization of P with respect to
the covering {πi : P → Pi}i∈{1,...,N} is a family {ji : H → Pi}i∈{1,...,N} of right H-colinear alge-
bra homomorphisms (cleaving maps).
It is clear that a principal comodule algebra is piecewise trivial if and only if it admits
a piecewise trivialization (see the preceding section).
1.4 The Peter–Weyl comodule algebra
The Peter–Weyl comodule algebra (see [1] and references therein) extends the notion of re-
gular functions in the C∗-algebra of a compact quantum group (linear combinations of matrix
coefficients of the finite-dimensional corepresentations) to unital C∗-algebras equipped with
a compact quantum group action.
Definition 6 (cf. [11]). For a unital C∗-algebra A and a compact quantum group (H,∆), we
say that an injective unital ∗-homomorphism δ : A→ A⊗min H is a coaction if and only if
1) (δ ⊗ id) ◦ δ = (id⊗∆) ◦ δ (coassociativity),
2) {δ(a)(1⊗ h) | a ∈ A, h ∈ H}cls = A ⊗
min
H (counitality).
Here ⊗min denotes the spatial tensor product of C∗-algebras and {·}cls stands for the closed
linear span of a subset of a Banach space. We say that a compact quantum group acts on
a unital C∗-algebra if there is a coaction in the aforementioned sense.
Next, we denote by O(H) the dense Hopf ∗-subalgebra of H spanned by the matrix coeffi-
cients of finite-dimensional corepresentations. We define the Peter–Weyl subalgebra of A [1]
as
PH(A) := {a ∈ A | δ(a) ∈ A⊗O(H)}.
One shows that it is an O(H)-comodule algebra which is a dense ∗-subalgebra of A [11, 13].
The Peter–Weyl comodule algebra of functions on a compact Hausdorff space with an action
of a compact group is principal if and only if the action is free [1, 2]. In other words, the Galois
condition of Hopf–Galois theory holds if and only if we have a compact principal bundle.
Nontrivial Deformation of a Trivial Bundle 5
2 The SUq(2)-prolongation of the classical Hopf fibration
To fix the notation, let us recall definitions of the Hopf algebras O(U(1)) and O(SUq(2)), and
the Peter–Weyl comodule algebra PC(U(1))(C(S3)) of functions on the classical sphere S3. For
details on the latter algebra we refer the reader to [3].
Recall that the ∗-algebra O(U(1)) of polynomial functions on U(1) is generated by the unitary
element u : U(1) 3 x 7→ x ∈ C, and can be equivalently defined as the algebra of Laurent
polynomials in u subject to the relation u−1 = u∗. The Hopf algebra structure is given by
∆(u) := u⊗ u, ε(u) := 1 and S(u) := u−1.
The algebra of polynomial functions on SUq(2) [14] is generated as a ∗-algebra by α and γ
satisfying relations
αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ, α∗α+ γ∗γ = 1, αα∗ + q2γγ∗ = 1, (1)
where 0 < q ≤ 1. The Hopf algebra structure comes from the matrix
U :=
(
α −qγ∗
γ α∗
)
, i.e. ∆(Uij) :=
∑
k
Uik ⊗ Ukj , S(Uij) := U∗ji, ε(Uij) := δij .
The Hopf ∗-algebra epimorphism
π : O(SUq(2)) −→ O(U(1)), π(α) := u, π(γ) := 0, (2)
makes O(SUq(2)) into a left and right O(U(1))-comodule algebra via the left and right coactions
(π⊗ id)◦∆ and (id⊗π)◦∆ respectively. For q = 1 the Hopf algebra O(SUq(2)) is commutative,
and we denote its generators by a and c rather then α and γ.
The Peter–Weyl comodule algebra PC(U(1))(C(S3)) is the subalgebra of C(SU(2)) that is the
algebraic direct sum of the modules of continuous sections of the complex line bundles Ln, n ∈ Z,
associated to the Hopf fibration:
PC(U(1))(C(S3)) =
⊕
n∈Z
Γ(Ln).
We have the following proper inclusions of function algebras:
O(SU(2)) ( PC(U(1))(C(S3)) ( C(S3).
Next, recall that a, c : S3 → C are coordinate functions on S3 satisfying |a|2 + |c|2 = 1. The
diagonal action of U(1) on S3 yielding the Hopf fibration dualizes to the O(U(1))-comodule
algebra structure on PC(U(1))(C(S3)) given by a 7→ a⊗ u, c 7→ c⊗ u.
Now we will describe the piecewise trivial structure of PC(U(1))(C(S3)). For brevity, we define
ω :=
√
2
1 + ||a|2 − |c|2|
.
Note that ω is an element of the coaction-invariant subalgebra PC(U(1))(C(S3))coO(U(1)) = Γ(L0),
which we identify with C(S2). Let us also define the following ideals Ia, Ic ⊆ C(S2):
Ia :=
{
f ∈ C(S2)
∣∣ f(x) = 0 for all x ∈ S2 such that |a|2(x) ≤ 1/2
}
,
Ic :=
{
f ∈ C(S2)
∣∣ f(x) = 0 for all x ∈ S2 such that |a|2(x) ≥ 1/2
}
.
It is well known (cf. [3]) that the canonical surjections C(S2) → C(S2)/Ii ∼= C(D), i = a, c,
where D is the unit disk, form a covering, and that (1− ω2|a|2) ∈ Ia, (1− ω2|c|2) ∈ Ic. We also
know [3, equation (3.4.57)] that(
1− ω2|a|2
)(
1− ω2|c|2
)
= 0.
6 P.M. Hajac and B. Zieliński
The covering of PC(U(1))(C(S3)) can now be given by the canonical surjections in terms of Ia
and Ic (cf. [3]):
πa : PC(U(1))(C(S3)) −→ PC(U(1))(C(S3))/(IaPC(U(1))(C(S3))),
πc : PC(U(1))(C(S3)) −→ PC(U(1))(C(S3))/(IcPC(U(1))(C(S3))).
Indeed, since PC(U(1))(C(S3)) is a principal O(U(1))-comodule algebra with the coaction-inva-
riant subalgebra C(S2), it follows from [7, Proposition 3.4] that the maps πi form a covering.
A trivialization associated with the above covering is given by the following cleaving maps,
which are clearly algebra homomorphisms:
ja : O(U(1)) −→ PC(U(1))(C(S3))/(IaPC(U(1))(C(S3))), un 7−→ πa(ωa)n,
jc : O(U(1)) −→ PC(U(1))(C(S3))/(IcPC(U(1))(C(S3))), un 7−→ πc(ωc)
n.
One can argue (cf. [3]) that
fa : PC(U(1))(C(S3))/(IaPC(U(1))(C(S3)))
∼=−→ C(D)⊗O(U(1)),
fc : PC(U(1))(C(S3))/(IcPC(U(1))(C(S3)))
∼=−→ C(D)⊗O(U(1)), (3)
fi : x 7−→ πi(x(0))ji(Sx(1))⊗ x(2), i = a, c.
To see this, first note that πa(C(S2)) ∼= C(D) ∼= πc(C(S2)). Then, for any n ∈ Z,
fi(πi(Γ(Ln))) = πi(C(S2))⊗ un = C(D)⊗ un, i = a, c,
whence fi(PC(U(1))(C(S3))) = C(D)⊗O(U(1)). Indeed, fi(πi(Γ(Ln))) ⊆ πi(C(S2))⊗un. On the
other hand, consider an arbitrary element y ∈ C(D). Then there exist elements ya, yc ∈ C(S2)
such that y = πa(ya) = πc(yc). Hence
y ⊗ un = fz(πz(yzz
nωn)), z = a, c.
Here we adopt the convention that z−|n| := (z∗)|n|. Summarizing, PC(U(1))(C(S3)) is a piecewise
trivial principal comodule algebra [3].
SinceO(SUq(2)) is a left principalO(U(1))-comodule algebra, by [9, Lemma 1.13] the cotensor
product PC(U(1))(C(S3))�O(U(1))O(SUq(2)) is a piecewise trivial principal comodule algebra.
Explicitly, the covering and trivializations inherited from PC(U(1))(C(S3)) make it piecewise
trivial via the formulas:
π̂i := πi ⊗ id, ĵi := (ji ◦ π ⊗ id) ◦∆O(SUq(2)), i = a, c.
Using these formulas and the isomorphisms (3), one can check that the trivializable pieces of
the comodule algebra PC(U(1))(C(S3))�O(U(1))O(SUq(2)) are isomorphic to C(D)⊗O(SUq(2))
(cf. [9, equation (1.8)]).
Furthermore, as the comodule algebra PC(U(1))(C(S3))�O(U(1))O(SUq(2)) is a cotensor pro-
duct, combining [9, Lemma 1.13] with [9, Theorem 1.5] yields that PC(U(1))(C(S3)) is a piecewise
trivial (Kerπ)-reduction (see (2)) of PC(U(1))(C(S3))�O(U(1))O(SUq(2)).
Theorem 1 (main result). The comodule algebra PC(U(1))(C(S3))�O(U(1))O(SUq(2)) is not iso-
morphic to any smash product C(S2) oO(SUq(2)) comodule algebra.
Nontrivial Deformation of a Trivial Bundle 7
Proof. Suppose that there exists a cleaving map
O(SUq(2)) −→ PC(U(1))(C(S3))�O(U(1))O(SUq(2))
that is an algebra homomorphism. It is tantamount to the existence of a U(1)-equivariant
algebra homomorphism f : O(SUq(2)) → PC(U(1))(C(S3)) [5, Proposition 4.1]. Let α and γ
denote generators of O(SUq(2)), and a, c their classical counterparts. Since f([α, α∗]) = 0, it
follows from (1) that f(γ) = 0 and f(α)f(α)∗ = 1.
On the other hand, by the U(1)-equivariance, f(α) = f1a + f2c, for some f1, f2 ∈ C(S2).
Furthermore, any continuous section of the Hopf line bundle L1 can be written as g1a + g2c
for some g1, g2 ∈ C(S2). We can rewrite it as (g1a + g2c)f(α)∗f(α). Since (g1a + g2c)f(α)∗ ∈
C(S2), we conclude that f(α) spans Γ(L1) as a left C(S2)-module. Also, if gf(α) = 0 for
some g ∈ C(S2), then g = gf(α)f(α∗) = 0. Hence f(α) is a basis of Γ(L1) contradicting its
nonfreeness. �
Acknowledgements
The authors are grateful to Tomasz Brzeziński for discussions, and to the referees for care-
ful proofreading of the manuscript. This work was partially supported by the NCN-grant
2011/01/B/ST1/06474.
References
[1] Baum P.F., De Commer K., Hajac P.M., Free actions of compact quantum groups of unital C∗-algebras,
arXiv:1304.2812.
[2] Baum P.F., Hajac P.M., Local proof of algebraic characterization of free actions, arXiv:1402.3024.
[3] Baum P.F., Hajac P.M., Matthes R., Szymański W., Noncommutative geometry approach to principal and
associated bundles, in Quantum Symmetry in Noncommutative Geometry, to appear, math.DG/0701033.
[4] Brzeziński T., Hajac P.M., The Chern–Galois character, C. R. Math. Acad. Sci. Paris 338 (2004), 113–116,
math.KT/0306436.
[5] Brzeziński T., Zieliński B., Quantum principal bundles over quantum real projective spaces, J. Geom. Phys.
62 (2012), 1097–1107, arXiv:1105.5897.
[6] Günther R., Crossed products for pointed Hopf algebras, Comm. Algebra 27 (1999), 4389–4410.
[7] Hajac P.M., Krähmer U., Matthes R., Zieliński B., Piecewise principal comodule algebras, J. Noncommut.
Geom. 5 (2011), 591–614, arXiv:0707.1344.
[8] Hajac P.M., Matthes R., So ltan P.M., Szymański W., Zieliński B., Hopf–Galois extensions and C∗ algebras,
in Quantum Symmetry in Noncommutative Geometry, to appear.
[9] Hajac P.M., Rudnik J., Zieliński B., Reductions of piecewise trivial comodule algebras, arXiv:1101.0201.
[10] Kobayashi S., Nomizu K., Foundations of differential geometry. Vol. I, Interscience Publishers, New York –
London, 1963.
[11] Podleś P., Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3)
groups, Comm. Math. Phys. 170 (1995), 1–20, hep-th/9402069.
[12] Schauenburg P., Galois objects over generalized Drinfeld doubles, with an application to uq(sl2), J. Algebra
217 (1999), 584–598.
[13] So ltan P.M., On actions of compact quantum groups, Illinois J. Math. 55 (2011), 953–962, arXiv:1003.5526.
[14] Woronowicz S.L., Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. Res.
Inst. Math. Sci. 23 (1987), 117–181.
http://arxiv.org/abs/1304.2812
http://arxiv.org/abs/1402.3024
http://arxiv.org/abs/math.DG/0701033
http://dx.doi.org/10.1016/j.crma.2003.11.009
http://arxiv.org/abs/math.KT/0306436
http://dx.doi.org/10.1016/j.geomphys.2011.12.008
http://arxiv.org/abs/1105.5897
http://dx.doi.org/10.1080/00927879908826704
http://dx.doi.org/10.4171/JNCG/88
http://dx.doi.org/10.4171/JNCG/88
http://arxiv.org/abs/0707.1344
http://arxiv.org/abs/1101.0201
http://dx.doi.org/10.1007/BF02099436
http://arxiv.org/abs/hep-th/9402069
http://dx.doi.org/10.1006/jabr.1998.7814
http://arxiv.org/abs/1003.5526
http://dx.doi.org/10.2977/prims/1195176848
http://dx.doi.org/10.2977/prims/1195176848
1 Introduction and preliminaries
1.1 Notation
1.2 Reductions and prolongations of principal comodule algebras
1.3 Piecewise triviality
1.4 The Peter–Weyl comodule algebra
2 The SUq(2)-prolongation of the classical Hopf fibration
References
|