Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group
We investigate principal G-bundles on a compact Kähler manifold, where G is a complex algebraic group such that the connected component of it containing the identity element is reductive. Defining (semi)stability of such bundles, it is shown that a principal G-bundle EG admits an Einstein-Hermitian...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146826 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group / I. Biswas, T.L. Gómez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We investigate principal G-bundles on a compact Kähler manifold, where G is a complex algebraic group such that the connected component of it containing the identity element is reductive. Defining (semi)stability of such bundles, it is shown that a principal G-bundle EG admits an Einstein-Hermitian connection if and only if EG is polystable. We give an equivalent formulation of the (semi)stability condition. A question is to compare this definition with that of [Gómez T.L., Langer A., Schmitt A.H.W., Sols I., Ramanujan Math. Soc. Lect. Notes Ser., Vol. 10, Ramanujan Math. Soc., Mysore, 2010, 281-371]. |
---|