Why Do the Relativistic Masses and Momenta of Faster-than-Light Particles Decrease as their Speeds Increase?
It has recently been shown within a formal axiomatic framework using a definition of four-momentum based on the Stückelberg-Feynman-Sudarshan-Recami ''switching principle'' that Einstein's relativistic dynamics is logically consistent with the existence of interacting faster...
Saved in:
Date: | 2014 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2014
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/146852 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Why Do the Relativistic Masses and Momenta of Faster-than-Light Particles Decrease as their Speeds Increase? / J.X. Madarász, M. Stannett, G. Székely // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 35 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | It has recently been shown within a formal axiomatic framework using a definition of four-momentum based on the Stückelberg-Feynman-Sudarshan-Recami ''switching principle'' that Einstein's relativistic dynamics is logically consistent with the existence of interacting faster-than-light inertial particles. Our results here show, using only basic natural assumptions on dynamics, that this definition is the only possible way to get a consistent theory of such particles moving within the geometry of Minkowskian spacetime. We present a strictly formal proof from a streamlined axiom system that given any slow or fast inertial particle, all inertial observers agree on the value of m⋅√|1−v²|, where m is the particle's relativistic mass and v its speed. This confirms formally the widely held belief that the relativistic mass and momentum of a positive-mass faster-than-light particle must decrease as its speed increases. |
---|