WKB Approximation in Noncommutative Gravity
We consider the quasi-commutative approximation to a noncommutative geometry defined as a generalization of the moving frame formalism. The relation which exists between noncommutativity and geometry is used to study the properties of the high-frequency waves on the flat background.
Gespeichert in:
Datum: | 2007 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2007
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146899 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | WKB Approximation in Noncommutative Gravity / M. Buric, J. Madore, G. Zoupanos // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146899 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468992019-02-12T01:25:41Z WKB Approximation in Noncommutative Gravity Buric, M. Madore, J. Zoupanos, G. We consider the quasi-commutative approximation to a noncommutative geometry defined as a generalization of the moving frame formalism. The relation which exists between noncommutativity and geometry is used to study the properties of the high-frequency waves on the flat background. 2007 Article WKB Approximation in Noncommutative Gravity / M. Buric, J. Madore, G. Zoupanos // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 8 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 46L87; 83C35 http://dspace.nbuv.gov.ua/handle/123456789/146899 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider the quasi-commutative approximation to a noncommutative geometry defined as a generalization of the moving frame formalism. The relation which exists between noncommutativity and geometry is used to study the properties of the high-frequency waves on the flat background. |
format |
Article |
author |
Buric, M. Madore, J. Zoupanos, G. |
spellingShingle |
Buric, M. Madore, J. Zoupanos, G. WKB Approximation in Noncommutative Gravity Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Buric, M. Madore, J. Zoupanos, G. |
author_sort |
Buric, M. |
title |
WKB Approximation in Noncommutative Gravity |
title_short |
WKB Approximation in Noncommutative Gravity |
title_full |
WKB Approximation in Noncommutative Gravity |
title_fullStr |
WKB Approximation in Noncommutative Gravity |
title_full_unstemmed |
WKB Approximation in Noncommutative Gravity |
title_sort |
wkb approximation in noncommutative gravity |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146899 |
citation_txt |
WKB Approximation in Noncommutative Gravity / M. Buric, J. Madore, G. Zoupanos // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 8 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT buricm wkbapproximationinnoncommutativegravity AT madorej wkbapproximationinnoncommutativegravity AT zoupanosg wkbapproximationinnoncommutativegravity |
first_indexed |
2025-07-11T00:52:18Z |
last_indexed |
2025-07-11T00:52:18Z |
_version_ |
1837309831072972800 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 3 (2007), 125, 12 pages
WKB Approximation in Noncommutative Gravity?
Maja BURIĆ †, John MADORE ‡ and George ZOUPANOS §
† Faculty of Physics, University of Belgrade, P.O. Box 368 RS-11001 Belgrade, Serbia
E-mail: majab@phy.bg.ac.yu
‡ Laboratoire de Physique Théorique, Université de Paris-Sud,
Bâtiment 211, F-91405 Orsay, France
E-mail: madore@th.u-psud.fr
§ Physics Department, National Technical University, Zografou Campus, GR-15780 Athens
E-mail: zoupanos@cern.ch
Received October 25, 2007, in final form December 21, 2007; Published online December 24, 2007
Original article is available at http://www.emis.de/journals/SIGMA/2007/125/
Abstract. We consider the quasi-commutative approximation to a noncommutative geo-
metry defined as a generalization of the moving frame formalism. The relation which
exists between noncommutativity and geometry is used to study the properties of the high-
frequency waves on the flat background.
Key words: noncommutative geometry; models of quantum gravity
2000 Mathematics Subject Classification: 46L87; 83C35
1 Preliminary formalism
Our purpose in this paper is to analyze the relation which exists between the noncommutativity
of the local coordinates and the gravitational field on a given space-time. In particular model of
noncommutative gravity which we develop, in the noncommutative frame formalism, this relation
is expressed as consistency between the algebraic and the differential-geometric structures, or
in other language as generalized Jacobi identities.
Let µ be a typical ‘large’ source mass with ‘Schwarzschild radius’ GNµ. We have two length
scales, determined by respectively GN~, the square of the Planck length and by k̄, the scale
of noncommutativity. The gravitational field is weak if the dimensionless parameter εGF =
GN~−1µ2 is small; the space-time is almost commutative if the dimensionless parameter ε = k̄µ2
is small. These two parameters are not necessarily related but we shall here assume that they
are of the same order of magnitude,
εGF ' ε.
If noncommutativity is not directly related to gravity then it makes sense to speak of ordinary
gravity as the limit k̄ → 0 with GNµ nonvanishing. On the other hand if noncommutativity
and gravity are directly related then both should vanish with k̄. We wish here to consider an
expansion in the parameter ε, which we have seen is a measure of the relative dimension of
a typical ‘space-time cell’ compared with the Planck length of a typical quantity of gravitational
energy. Our motivation for considering noncommutative geometry as an ‘avatar’ of gravity is
the belief that it sheds light on the role of the gravitational field as the universal regulator
of ultra-violet divergences. We mention here only some elements of the approach we use to
?This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in
Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). The full collection is available at
http://www.emis.de/journals/SIGMA/symmetry2007.html
mailto:majab@phy.bg.ac.yu
mailto:madore@th.u-psud.fr
mailto:zoupanos@cern.ch
http://www.emis.de/journals/SIGMA/2007/125/
http://www.emis.de/journals/SIGMA/symmetry2007.html
2 M. Burić, J. Madore and G. Zoupanos
study gravitational fields on Lorentz-signature manifolds. A general description can be found
elsewhere [1] as can a simple explicit solution [2]. Some properties of the perturbation analyzed
here which we shall use are derived in [3].
We start with a ‘noncommutative space’, a ∗-algebra A generated by four Hermitian ele-
ments xµ which satisfy the commutation relations
[xµ, xν ] = ik̄Jµν(xσ).
We assume that algebra is associative, therefore the commutators obey the Jacobi identities.
We assume further that over A there is a differential calculus [1] which possesses a preferred
frame θα, a set of 1-forms which commute with the algebra,
[xµ, θα] = 0.
The space one obtains in the commutative limit has a global moving frame θ̃α. The differential
is defined as
df = eαf θα,
that is,
dxµ = eµ
αθα, eµ
α = eαxµ.
The eα are the vector fields dual to the frame forms
θα(eβ) = δα
β .
We have two basic structures: the algebra A defined by a product which is restricted by the
matrix of elements Jµν and the metric defined by a frame that is the matrix of elements eµ
α.
Consistency requirements impose relations between these two structures which in simple situ-
ations allow us to find a one-to-one correspondence between the commutators and the metric.
Most important relation is the Leibniz rule
ik̄dJµν = [dxµ, xν ] + [xµ, dxν ] = [eµ
α, xν ]θα − [eν
α, xµ]θα. (1)
One can see in (1) a differential equation for Jµν in terms of eµ
α. In important special cases this
equation reduces to a simple differential equation of one variable.
We must insure in addition that the differential is well defined. A necessary condition is that
d[xµ, θα] = 0, from which it follows that
d[xµ, θα] = [dxµ, θα] + [xµ, dθα] = eµ
β[θβ, θα]− 1
2 [xµ, Cα
βγ ]θβθγ .
We have introduced the Ricci rotation coefficients
dθα = −1
2Cα
βγθβθγ .
Therefore we find that multiplication of 1-forms satisfies
[θα, θβ ] = 1
2θβ
µ[xµ, Cα
γδ]θγθδ.
The metric is defined by the map
g(θα ⊗ θβ) = gαβ .
WKB Approximation in Noncommutative Gravity 3
The bilinearity of the metric implies that gαβ are numbers and not functions of coordinates,
exactly as in the commutative case. We choose the frame to be orthonormal; we can write
therefore
gαβ = ηαβ .
We introduce also
gµν = g(dxµ ⊗ dxν) = eµ
αeν
βgαβ .
Other differential-geometric quantities: connection, torsion and curvature can be defined with
the same formulae as in commutative differential geometry. We will take here that the torsion
vanishes.
2 The quasi-commutative approximation
To lowest order in ε the partial derivatives are well defined and the approximation, which we
shall refer to as the quasi-commutative,
[xλ, f ] = ik̄Jλσ∂σf
is valid. The Leibniz rule and the Jacobi identity can be written in this approximation as
eαJµν = ∂σe[µ
α Jσν], εκλµνJ
γλeγJµν = 0.
We call these equations the Jacobi equations.
Written in frame components Jαβ of the commutators, Jαβ = θα
µθβ
ν Jµν , the Jacobi equations
become
eγJαβ − C [α
γδJ
β]δ = 0, (2)
εαβγδJ
γη(eηJ
αβ + Cα
ηζJ
βζ) = 0.
We have used here the expression for the rotation coefficients, valid also in the quasi-commuta-
tive approximation
Cα
βγ = θα
µe[βeµ
γ] = −eν
βeµ
γ∂[νθ
α
µ],
and the inverse θα
µ of the eµ
α.
Equation (2) for the rotation coefficients can be solved. Provided J−1
αβ exists, after some
algebra we obtain that
Cα
βγ = JαηeηJ
−1
βγ .
If we introduce
Ĉαβγ = J−1
αδ Cδ
βγ ,
we find that
Ĉαβγ = eαJ−1
βγ
and also
Ĉαβγ + Ĉβγα + Ĉγαβ = 0.
This equation we can write as a de Rham cocycle condition
dJ−1 = 0, J−1 = 1
2J−1
αβ θαθβ.
4 M. Burić, J. Madore and G. Zoupanos
3 The weak-field approximation
We assumed in the previous section that the noncommutativity is small and we derived some
relations to first-order in the parameter ε. We shall now make an analogous assumption con-
cerning the gravitational field; we shall assume that εGF is also small and of the same order of
magnitude. With these two assumptions the Jacobi equations become relatively easy to solve.
We suppose that the basic unknowns, the commutators and the frame components are con-
stants in the ground state. That is, the ground state is a flat noncommutative space characterized
by Jµν
0 and θα
0 . It is perturbed to
Jαβ = Jαβ
0 + εIαβ , θα = θβ
0 (δα
β − εΛα
β).
The leading order of the Jacobi system is then given by
eγIαβ − e[γΛ[α
δ] J
β]δ
0 = 0, (3)
εαβγδJ
γη
0 eηI
αβ = 0. (4)
Introducing the notation
Îαβ = J−1
0 αγJ−1
0 βδI
γδ, Λ̂αβ = J−1
0 αγΛγ
β ,
(3) can be written as
eγ(Îαβ − Λ̂[αβ]) = e[αΛ̂β]γ (5)
and (4) as
εαβγδeαÎβγ = 0. (6)
We note that Î is a linear perturbation of J−1
0 ,
J−1
αβ = J−1
0αβ + εÎαβ .
Equations (5)–(6) can be solved [3]. The most general solution is given by
Λ̂αβ = Îαβ + eβAα + cαβ , (7)
where c is a 2-form with constant components and A is an arbitrary 1-form. Î must obey the
cocycle condition (4) which, introducing
Î = 1
2 Îαβθαθβ
can be written as
dÎ = 0. (8)
Therefore we see that there must exist a 1-form C such that
Îγδ = e[γCδ].
We can now state more precisely the relation between noncommutativity and gravity in the
linear approximation. With cαβ = 0 we have
Λα
β = Jαγ
0 (Îγβ + eβAγ). (9)
WKB Approximation in Noncommutative Gravity 5
If we denote the perturbation of the metric as
gµν = ηµν − εgµν
1 ,
we easily derive the relation
gµν
1 = −ηαβΛ(µ
α δ
ν)
β = −Λ(µν).
It follows from (9) that
g1αβ = −J0(α
γ(Îγβ) + eβ)Aγ).
The frame itself is given by
θα = d(xα − εJαγ
0 Aγ)− εJαγ
0 Îγβdxβ .
We therefore find the following expressions
dθα = −εJαγ
0 eδ Îγβdxδdxβ = 1
2εJαδ
0 eδ Îβγdxγdxβ, Cα
βγ = εJαδ
0 eδ Îβγ .
Using the expression
ωαβγ = 1
2(Cαβγ − Cβγα + Cγαβ)
for the components of the connection 1-form ωα
β = ωα
γβθγ , we find
ωαβγ = 1
2ε(J0[α
δeδ Îβγ] + J0β
δeδ Îαγ). (10)
The torsion obviously vanishes.
Further, using the definition of the Riemann curvature tensor
Ωα
β = Rα
βγδθ
γθδ = dωα
β + ωα
γωγ
β
from (10) we obtain for the linearized curvature
Rαβγδ = 1
2εeη
(
J0η[γeδ]Îαβ + J0η[αeβ]Îγδ
)
.
For the Ricci curvature we find
Rβγ = −1
2εeζ
(
J0ζ(βeαÎγ)α + Jα
0 ζe(β Îγ)α
)
. (11)
One more contraction yields the expression
R = −2εJ0
ζαeζe
β Îαβ (12)
for the Ricci scalar. Using the cocycle condition permits us to write this in the form
R = ε∆χ,
where the scalar field χ, the trace component of the perturbation, is defined as
χ = Jαβ
0 Îαβ .
6 M. Burić, J. Madore and G. Zoupanos
4 The WKB approximation
In the commutative case the WKB dispersion relations follow from the Einstein equations.
In order to introduce the WKB approximation in noncommutative case, we suppose that the
algebra A is a tensor product
A = A0 ⊗Aω
of a ‘slowly-varying’ factor A0 in which all amplitudes lie and a ‘rapidly-varying’ phase factor
which is of order-of-magnitude ε so that only functions linear in this factor can appear. By
‘slowly-varying’ element f of the algebra we mean an element with a classical limit f̃ such that
∂αf̃ ∼< µf̃ . The generic element f of the algebra then is of the form
f = f0 + εf̄eiωφ,
where f0 and f̄ belong to A0. Because of the condition on ε the factor order does not matter and
these elements form an algebra. The frequency parameter ω is so chosen that for an element f
of A0 the estimate
[φ, f ] ' k̄µ
holds. The commutator [f, eiωφ] is thus of order of magnitude
[f, eiωφ] ' k̄µω.
The wave vector
ξα = eαφ
is normal to the surfaces of constant phase. We shall require also that the energy of the wave be
such that it contribute not as source to the background field. This inequality can be written as
εω2 � µ2.
It also assures us that for the approximation we are considering we need not pay attention to the
order of the factors in the perturbation. We have in fact partially solved the system of equations
without further approximation. The purpose of the following analysis is to find the constraints
on the wave vector ξ.
4.1 The quasi-commutative case
In the WKB approximation the perturbations Λα
β and Iαβ are of the form
Λα
β = Λ̄α
βeiωφ, Iαβ = Īαβeiωφ,
where Λ̄α
β and Īαβ belong to A0. Therefore we have also
gµν
1 = ḡµνeiωφ.
Using ξα and ηα = Jαβ
0 ξβ we have
eαIβγ = (iωξαĪβγ + eαĪβγ)eiωφ, eαΛβγ = (iωξαΛ̄βγ + eαΛ̄βγ)eiωφ.
WKB Approximation in Noncommutative Gravity 7
The cocycle condition replaces Einstein equation to a certain extent. In the WKB approxi-
mation it becomes
ξαÎβγ + ξβ Îγα + ξγ Îαβ = 0.
We multiply this equation by ξα and obtain
ξ2Îβγ + ξ[β Îγ]αξα = 0. (13)
If ξ2 6= 0 then we conclude that
Îβγ = −ξ−2ξ[β Îγ]αξα.
This is no restriction; it defines simply Cα by
iωCα = −ξ−2Îαβξβ .
If ξ2 = 0 then we conclude that
ξ[β Îγ]αξα = 0.
This is a small restriction; the ξα must be a Petrov vector of Î. We shall improve this in
a particular case in the next section. In terms of the scalar χ we obtain the relation
Îαβηβ = −1
2χξα. (14)
Using the definition of η we find in the WKB approximation to first order
ωαβγ = 1
2ε(iω)
(
η[αÎβγ] + ηβ Îαγ
)
,
Rαβγδ = −1
2ε(iω)2
(
η[γξδ]Îαβ − η[αξβ]Îγδ
)
, (15)
Rβγ = −1
2ε(iω)2
(
ξ(βηα − ξαη(β
)
Îγ)α,
R = ε(iω)2χξ2.
In average the terms linear in ε vanish. Therefore in principle we have to calculate to second
order and average over several wavelengths. Using
〈Îαβ〉 = 0, 〈Îαβ Îγδ〉 = 1
2
ˆ̄Iαβ ˆ̄Iγδ,
and expanding the curvature to second order we find the expression
〈Rβγ〉 = 1
2ε2(iω)2
(
χ̄ξαη(γ
ˆ̄Iβ)α + 3
4 χ̄2ξβξγ + η2 ˆ̄Iηβ
ˆ̄Iη
γ − 1
2ηβηγ
ˆ̄Iαη
ˆ̄Iαη
)
(16)
for the Ricci tensor and the expression
〈R〉 = 1
8ε2(iω)2(2η2 ˆ̄Iαβ
ˆ̄Iαβ + 7χ̄2ξ2)
for the Ricci scalar. We shall return to these formulae in Section 5.
8 M. Burić, J. Madore and G. Zoupanos
4.2 The noncommutative lattice
As a lattice, the background noncommutativity is of considerable complexity, the contrary of
a simple cubic lattice. It is in general non-periodic but in the WKB approximation we can
assume periodicity since at the scale of the frequency Jµν
0 is a constant 4 × 4 matrix. It is
difficult to obtain general expressions for the modes of the high frequency waves and their
dispersion relations; however, it is interesting to analyse them in more detail by considering
a specific example. We take an arbitrary perturbation Îαβ with the wave vector ξα normalized
so that ξ0 = −1,
ˆ̄Iαβ =
0 b3 −b2 e1
−b3 0 b1 e2
b2 −b1 0 e3
−e1 −e2 −e3 0
.
One easily sees that the cocycle condition is equivalent to the constraint ~b = −~ξ×~e which is the
part of the field equations for the electromagnetic plane wave, the Bianchi equations. Suppose
that ξ is null and oriented along the z-axis, ξα = (0, 0, 1,−1). The cocycle condition imposes
that Î equals to
ˆ̄Iαβ =
0 0 −e1 e1
0 0 −e2 e2
e1 e2 0 e3
−e1 −e2 −e3 0
. (17)
The perturbation Î is of Petrov-type N if ~ξ · ~e = e3 = 0 ; this would be the second half of the
Maxwell field equations. In this case, for an arbitrary background noncommutativity given by
J0αβ =
0 B3 −B2 E1
−B3 0 B1 E2
B2 −B1 0 E3
−E1 −E2 −E3 0
(18)
we can write the amplitude of the metric perturbation in the form
ḡ1αβ = −J0(α
γ ˆ̄Iγβ) =
(
P11 P12
P T
12 P22
)
.
The expressions for P12, P22 can be obtained from (17)–(18) but they are somewhat lengthy.
However, it is easy to check that by a change of coordinates we can set P12 = 0, P22 = 0.
Introducing e1 = a cos γ, e2 = a sin γ, B2 + E1 = A sin Γ, B1 − E2 = A cos Γ the remaining
part P11 can be decomposed
P11 = aA
(
sin(γ + Γ) cos(γ + Γ)
cos(γ + Γ) − sin(γ + Γ)
)
+ aA
(
sin(γ − Γ) 0
0 sin(γ − Γ)
)
into a trace-free part and a trace. The trace-free part corresponds to a gravitational wave which
is polarized, and though the polarization is fixed in terms of γ + Γ, it can be arbitrary. In
addition there is a scalar wave, the trace. In the case when e3 6= 0 the perturbation Î is not of
Petrov type N ; the additional gravitational mode is longitudinal, a constraint mode.
WKB Approximation in Noncommutative Gravity 9
5 The Poisson energy and conservation laws
We have in fact associated a gravitational field to the noncommutative structure with the
map (7). We would like to consider now this structure as an effective field and estimate its
energy-momentum which we call the ‘Poisson energy’. We are confronted immediately with the
choice of the position of the extra term in the Einstein equations. If we place it on the right-hand
side, we can consider it as an effective matter source. If we keep it on the left-hand side then we
interpret it as a noncommutative modification of the curvature. First however we make some
preliminary remarks about conservation laws.
From (11)–(12) for the Einstein tensor we obtain
Gβγ = −1
2ε
(
J0ζ(βeζeαÎγ)α + J0
αζeζe(β Îγ)α − 2ηβγJ0ζδe
ζeαÎδα
)
.
In general the Einstein tensor does not vanish. A conservation equation of the associated energy-
momentum tensor in linear approximation is easy to verify. Applying the cocycle condition and
keeping in mind that, to linear order in ε, eαeβ = eβeα, we obtain
eβGβγ = −1
2ε
(
J0
αζeβeζeγ Îβα + J0
αζeβeζeβ Îγα − 2J0ζδeγeζeαÎδα
)
= −1
2εJ0
δζeζe
α(eαÎγδ − eγ Îαδ) = 1
2εJ0δζe
ζeαeδ Îαγ = 0.
As we shall see, the conservation law holds in an important special case in quadratic order too.
5.1 Canonical orientation
To the extent that the noncommutative background is analogous to a lattice, the perturbations
can be considered as elastic vibrations or phonons. This analogy however is tenuous at the
approximation we are considering since we have excluded any resonance phenomena. These could
appear if we allowed larger-amplitude waves with energy sufficient to change the background.
The case we shall now focus to would then be analogous to a phonon propagating along one of
the axes of a regular cubic lattice. In the special case in which it is also Petrov vector of the
perturbation the dispersion relations become clearer.
Assume then that η and ξ are parallel and set
ηα = Jαβ
0 ξβ = λξα. (19)
It follows from (14) that the vector ξ is an eigenvector of J not only to first but also to second
order. Equation (15) yields for the linearized Riemann curvature
Rαβγδ = 0.
The dispersion relation
ξ2 = 0
follows from (13).
In quadratic order, using the dispersion relation, we find that the expression (16) for the
Ricci tensor simplifies to
〈Rβγ〉 = −1
8ε2(iω)2(χ̄2 + 2λ2 ˆ̄Iαη
ˆ̄Iαη)ξβξγ .
The Ricci scalar vanishes and we obtain for the Einstein tensor the average value
〈Gβγ〉 = −ρξβξγ
10 M. Burić, J. Madore and G. Zoupanos
with
ρ = −1
8(εω)2(χ̄2 + 2λ2 ˆ̄Iαη
ˆ̄Iαη).
The energy-momentum is that of a null dust with a density ρ.
In the WKB approximation we can, just as in the classical case, derive a conservation law
for ρ which has a natural interpretation as graviton-number conservation. If we multiply the
cocycle condition (8) by ξα we obtain
ξαeαÎβγ + ξαeβ Îγα + ξαeγ Îαβ = 0.
We also have
eα(ξαÎβγ + ξβ Îγα + ξγ Îαβ) = 0.
Adding these two equations, using (14), (19) and not forgetting that eαξβ = eβξα in our approxi-
mation, we find
(ξαeαÎβγ + eα(ξαÎβγ))Îβγ + 2(ξαeβ Îγα + eα(ξβ Îγα))Îβγ
= eα(ξαÎβγ Îβγ) + 2eα(ξβ ÎγαÎβγ) = 0.
The conservation law
eα(ρξα) = 0
follows and from it the conservation of the effective source,
eα(ρξαξβ) = 0.
To interpret the additional term we have isolated as the energy-momentum of an external
field,
Gβγ = −16πGNTβγ
the sign of ρ should be non-negative. However, as
ρ = −1
8(εω)2(χ̄2 + 2λ2 ˆ̄Iαη
ˆ̄Iαη) = 1
4(εωλ~e)2 − 1
4(εωλ~b)2 − 1
8(εωχ̄)2,
the matter density does not have a fixed sign, unless of course one place restrictions on the
relative importance of the space-time and space-space commutation relations. This exactly is
one of the properties which could explain the acceleration of the universe [4] and it makes the
‘Poisson energy’ a possible candidate for dark energy. We shall examine this in more detail in
the future work.
6 Conclusions
The formalism on which the article has been based is one with a preferred frame. It is in a sense
gauge-fixed from the beginning. We have shown that the degrees-of-freedom or basic modes of
the resulting theory of gravity can be put in correspondence with those of the noncommutative
structure. As an application of the formalism we have considered a high-frequency perturbation
of the metric. In the classical theory it follows from the field equations that the perturbation
must satisfy a dispersion relation and a conservation law. We show that these remain valid in the
WKB Approximation in Noncommutative Gravity 11
noncommutative extension of the frame formalism and that they are consequences of a cocycle
condition on the corresponding perturbation of the Poisson structure.
The analysis of the dispersion relations however shows that the content of the high-frequency
radiation is not identical in the two cases. Noncommutative gravity accommodates the Ein-
steinean gravitational waves but they get necessarily polarized by the background noncom-
mutative lattice. There is also a massless scalar mode. In addition, we obtain that massive
longitudinal modes can exist; it is reasonable however to expect that they would be eliminated
by some additional equations of motion for the Poisson structure.
We have also shown that the perturbation of the Poisson structure contributes to the energy-
momentum as an additional effective source of the gravitational field. Although the explicit
form of this contribution, the Poisson energy, was calculated only in a linearized, high-frequency
approximation it is certainly significant in a more general context. It would be very interesting
to examine the properties the Poisson energy beyond the WKB approximation, in particular in
the context of cosmology.
It would be nice, as a referee of this paper has suggested, to compare the details of the
frame approach to noncommutative gravity to the other approaches, e.g. [5, 6, 7, 8]; we will here
point out the main differences. A careful reader has already noticed that the noncommutative
frame formalism has intrinsically geometric formulation. The metric, connection, curvature are
all defined via the forms; they have the usual differential-geometric properties as e.g. linearity,
derivatives obey the Leibniz rule etc. As a consequence, inbuilt in the theory are the usual
symmetries as coordinate invariance; the commutator Jµν can have arbitrary dependence on
the coordinates. On the other hand, the analysis as presented is representation-free and thus
we have no action or equations of motion: all relations are just algebraic constraints.
The approach developed in [5, 6, 7, 8] emphasizes the gauge-field properties of the vielbein and
connection and follows the logic of the field theory. Thus basically one needs the representation
of the noncommutative fields (usually, the Moyal–Weyl representation with the commutator
Jµν= const). Some properties of the differential calculus have to be changed, for example the
Leibniz rule. Symmetries however are well defined and the action principle can be postulated.
The two approaches, clearly, differ conceptually and maybe the best way to compare them is to
compare the corresponding solutions to the specific physical problems. In this spirit, we present
our results for the gravitational wave propagation here.
Acknowledgements
This work is supported by the EPEAEK programme “Pythagoras II” and co-funded by the
European Union(75%) and the Hellenic state (25%). A CEI grant for participation in the
Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” is gratefully
acknowledged.
References
[1] Madore J., An introduction to noncommutative differential geometry and its physical applications, 2nd ed.,
London Mathematical Society Lecture Note Series, no. 257, Cambridge University Press, 2000.
[2] Burić M., Madore J., A dynamical 2-dimensional fuzzy space, Phys. Lett. B 622 (2005), 183–191,
hep-th/0507064.
[3] Burić M., Grammatikopoulos T., Madore J., Zoupanos G., Gravity and the structure of noncommutative
algebras, J. High Energy Phys. 2006 (2006), no. 04, 054, 17 pages, hep-th/0603044.
[4] Sahni V., Starobinsky A., Reconstructing dark energy, Internat. J. Modern Phys. D 15 (2006), 2105–2132,
astro-ph/0610026.
[5] Cardella M.A., Zanon D., Noncommutative deformation of four dimensional Einstein gravity, Classical
Quantum Gravity 20 (2003), L95–L104, hep-th/0212071.
http://arxiv.org/abs/hep-th/0507064
http://arxiv.org/abs/hep-th/0603044
http://arxiv.org/abs/astro-ph/0610026
http://arxiv.org/abs/hep-th/0212071
12 M. Burić, J. Madore and G. Zoupanos
[6] Garcia-Compean H., Obregon O., Ramirez C., Sabido M., Noncommutative self-dual gravity, Phys. Rev. D
68 (2003), 044015, 8 pages, hep-th/0302180.
[7] Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J., A gravity theory on noncommu-
tative spaces, Classical Quantum Gravity 22 (2005), 3511–3532, hep-th/0504183.
[8] Aschieri P., Dimitrijevic M., Meyer F., Wess J., Noncommutative geometry and gravity, Classical Quantum
Gravity 23 (2006), 1883–1912, hep-th/0510059.
http://arxiv.org/abs/hep-th/0302180
http://arxiv.org/abs/hep-th/0504183
http://arxiv.org/abs/hep-th/0510059
1 Preliminary formalism
2 The quasi-commutative approximation
3 The weak-field approximation
4 The WKB approximation
4.1 The quasi-commutative case
4.2 The noncommutative lattice
5 The Poisson energy and conservation laws
5.1 Canonical orientation
6 Conclusions
References
|