Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case
The 'relativistic' Heun equation is an 8-coupling difference equation that generalizes the 4-coupling Heun differential equation. It can be viewed as the time-independent Schrödinger equation for an analytic difference operator introduced by van Diejen. We study Hilbert space features of t...
Gespeichert in:
Datum: | 2015 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2015
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146903 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case / Simon N.M. Ruijsenaars // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146903 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1469032019-02-12T01:24:37Z Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case Simon N.M. Ruijsenaars The 'relativistic' Heun equation is an 8-coupling difference equation that generalizes the 4-coupling Heun differential equation. It can be viewed as the time-independent Schrödinger equation for an analytic difference operator introduced by van Diejen. We study Hilbert space features of this operator and its 'modular partner', based on an in-depth analysis of the eigenvectors of a Hilbert-Schmidt integral operator whose integral kernel has a previously known relation to the two difference operators. With suitable restrictions on the parameters, we show that the commuting difference operators can be promoted to a modular pair of self-adjoint commuting operators, which share their eigenvectors with the integral operator. Various remarkable spectral symmetries and commutativity properties follow from this correspondence. In particular, with couplings varying over a suitable ball in R⁸, the discrete spectra of the operator pair are invariant under the E₈ Weyl group. The asymptotic behavior of an 8-parameter family of orthonormal polynomials is shown to be shared by the joint eigenvectors. 2015 Article Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case / Simon N.M. Ruijsenaars // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33E05; 33E30; 39A45; 45C05; 47B39; 81Q05; 81Q10; 81Q80 DOI:10.3842/SIGMA.2015.004 http://dspace.nbuv.gov.ua/handle/123456789/146903 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The 'relativistic' Heun equation is an 8-coupling difference equation that generalizes the 4-coupling Heun differential equation. It can be viewed as the time-independent Schrödinger equation for an analytic difference operator introduced by van Diejen. We study Hilbert space features of this operator and its 'modular partner', based on an in-depth analysis of the eigenvectors of a Hilbert-Schmidt integral operator whose integral kernel has a previously known relation to the two difference operators. With suitable restrictions on the parameters, we show that the commuting difference operators can be promoted to a modular pair of self-adjoint commuting operators, which share their eigenvectors with the integral operator. Various remarkable spectral symmetries and commutativity properties follow from this correspondence. In particular, with couplings varying over a suitable ball in R⁸, the discrete spectra of the operator pair are invariant under the E₈ Weyl group. The asymptotic behavior of an 8-parameter family of orthonormal polynomials is shown to be shared by the joint eigenvectors. |
format |
Article |
author |
Simon N.M. Ruijsenaars |
spellingShingle |
Simon N.M. Ruijsenaars Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Simon N.M. Ruijsenaars |
author_sort |
Simon N.M. Ruijsenaars |
title |
Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case |
title_short |
Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case |
title_full |
Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case |
title_fullStr |
Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case |
title_full_unstemmed |
Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case |
title_sort |
hilbert-schmidt operators vs. integrable systems of elliptic calogero-moser type iv. the relativistic heun (van diejen) case |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146903 |
citation_txt |
Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type IV. The Relativistic Heun (van Diejen) Case / Simon N.M. Ruijsenaars // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT simonnmruijsenaars hilbertschmidtoperatorsvsintegrablesystemsofellipticcalogeromosertypeivtherelativisticheunvandiejencase |
first_indexed |
2025-07-11T00:52:40Z |
last_indexed |
2025-07-11T00:52:40Z |
_version_ |
1837309798049120256 |