A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian

We consider compact Grassmann manifolds G/K over the real, complex or quaternionic numbers whose spherical functions are Heckman-Opdam polynomials of type BC. From an explicit integral representation of these polynomials we deduce a sharp Mehler-Heine formula, that is an approximation of the Heckman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Rösler, M., Voit, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/146999
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian / M. Rösler, M. Voit // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146999
record_format dspace
fulltext
spelling irk-123456789-1469992019-02-13T01:23:37Z A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian Rösler, M. Voit, M. We consider compact Grassmann manifolds G/K over the real, complex or quaternionic numbers whose spherical functions are Heckman-Opdam polynomials of type BC. From an explicit integral representation of these polynomials we deduce a sharp Mehler-Heine formula, that is an approximation of the Heckman-Opdam polynomials in terms of Bessel functions, with a precise estimate on the error term. This result is used to derive a central limit theorem for random walks on the semi-lattice parametrizing the dual of G/K, which are constructed by successive decompositions of tensor powers of spherical representations of G. The limit is the distribution of a Laguerre ensemble in random matrix theory. Most results of this paper are established for a larger continuous set of multiplicity parameters beyond the group cases. 2015 Article A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian / M. Rösler, M. Voit // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C52; 43A90; 60F05; 60B15; 43A62; 33C80; 33C67 DOI:10.3842/SIGMA.2015.013 http://dspace.nbuv.gov.ua/handle/123456789/146999 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider compact Grassmann manifolds G/K over the real, complex or quaternionic numbers whose spherical functions are Heckman-Opdam polynomials of type BC. From an explicit integral representation of these polynomials we deduce a sharp Mehler-Heine formula, that is an approximation of the Heckman-Opdam polynomials in terms of Bessel functions, with a precise estimate on the error term. This result is used to derive a central limit theorem for random walks on the semi-lattice parametrizing the dual of G/K, which are constructed by successive decompositions of tensor powers of spherical representations of G. The limit is the distribution of a Laguerre ensemble in random matrix theory. Most results of this paper are established for a larger continuous set of multiplicity parameters beyond the group cases.
format Article
author Rösler, M.
Voit, M.
spellingShingle Rösler, M.
Voit, M.
A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Rösler, M.
Voit, M.
author_sort Rösler, M.
title A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian
title_short A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian
title_full A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian
title_fullStr A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian
title_full_unstemmed A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian
title_sort central limit theorem for random walks on the dual of a compact grassmannian
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/146999
citation_txt A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian / M. Rösler, M. Voit // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT roslerm acentrallimittheoremforrandomwalksonthedualofacompactgrassmannian
AT voitm acentrallimittheoremforrandomwalksonthedualofacompactgrassmannian
AT roslerm centrallimittheoremforrandomwalksonthedualofacompactgrassmannian
AT voitm centrallimittheoremforrandomwalksonthedualofacompactgrassmannian
first_indexed 2025-07-11T01:07:25Z
last_indexed 2025-07-11T01:07:25Z
_version_ 1837310740188364801