Skein Modules from Skew Howe Duality and Affine Extensions

We show that we can release the rigidity of the skew Howe duality process for sln knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine slm case, corresponding to looking at tangles embed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
1. Verfasser: Queffelec, H.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147018
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Skein Modules from Skew Howe Duality and Affine Extensions / H. Queffelec // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We show that we can release the rigidity of the skew Howe duality process for sln knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine slm case, corresponding to looking at tangles embedded in a solid torus. We investigate the relations between the invariants constructed by evaluation representations (and affinization of them) and usual skein modules, and give tools for interpretations of annular skein modules as sub-algebras of intertwiners for particular Uq(sln) representations. The categorification proposed in a joint work with A. Lauda and D. Rose also admits a direct extension in the affine case.