Simplex and Polygon Equations

It is shown that higher Bruhat orders admit a decomposition into a higher Tamari order, the corresponding dual Tamari order, and a ''mixed order''. We describe simplex equations (including the Yang-Baxter equation) as realizations of higher Bruhat orders. Correspondingly, a famil...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Dimakis, A., Müller-Hoissen, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147105
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Simplex and Polygon Equations / A. Dimakis, F. Müller-Hoissen // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 107 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:It is shown that higher Bruhat orders admit a decomposition into a higher Tamari order, the corresponding dual Tamari order, and a ''mixed order''. We describe simplex equations (including the Yang-Baxter equation) as realizations of higher Bruhat orders. Correspondingly, a family of ''polygon equations'' realizes higher Tamari orders. They generalize the well-known pentagon equation. The structure of simplex and polygon equations is visualized in terms of deformations of maximal chains in posets forming 1-skeletons of polyhedra. The decomposition of higher Bruhat orders induces a reduction of the N-simplex equation to the (N+1)-gon equation, its dual, and a compatibility equation.