Post-Lie Algebras and Isospectral Flows
In this paper we explore the Lie enveloping algebra of a post-Lie algebra derived from a classical R-matrix. An explicit exponential solution of the corresponding Lie bracket flow is presented. It is based on the solution of a post-Lie Magnus-type differential equation.
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147113 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Post-Lie Algebras and Isospectral Flows / K. Ebrahimi-Fard, A. Lundervold, I. Mencattini, H.Z. Munthe-Kaas // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147113 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1471132019-02-14T01:26:24Z Post-Lie Algebras and Isospectral Flows Ebrahimi-Fard, K. Lundervold, A. Mencattini, I. Munthe-Kaas, H.Z. In this paper we explore the Lie enveloping algebra of a post-Lie algebra derived from a classical R-matrix. An explicit exponential solution of the corresponding Lie bracket flow is presented. It is based on the solution of a post-Lie Magnus-type differential equation. 2015 Article Post-Lie Algebras and Isospectral Flows / K. Ebrahimi-Fard, A. Lundervold, I. Mencattini, H.Z. Munthe-Kaas // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H06; 17D99; 37J35 DOI:10.3842/SIGMA.2015.093 http://dspace.nbuv.gov.ua/handle/123456789/147113 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we explore the Lie enveloping algebra of a post-Lie algebra derived from a classical R-matrix. An explicit exponential solution of the corresponding Lie bracket flow is presented. It is based on the solution of a post-Lie Magnus-type differential equation. |
format |
Article |
author |
Ebrahimi-Fard, K. Lundervold, A. Mencattini, I. Munthe-Kaas, H.Z. |
spellingShingle |
Ebrahimi-Fard, K. Lundervold, A. Mencattini, I. Munthe-Kaas, H.Z. Post-Lie Algebras and Isospectral Flows Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Ebrahimi-Fard, K. Lundervold, A. Mencattini, I. Munthe-Kaas, H.Z. |
author_sort |
Ebrahimi-Fard, K. |
title |
Post-Lie Algebras and Isospectral Flows |
title_short |
Post-Lie Algebras and Isospectral Flows |
title_full |
Post-Lie Algebras and Isospectral Flows |
title_fullStr |
Post-Lie Algebras and Isospectral Flows |
title_full_unstemmed |
Post-Lie Algebras and Isospectral Flows |
title_sort |
post-lie algebras and isospectral flows |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147113 |
citation_txt |
Post-Lie Algebras and Isospectral Flows / K. Ebrahimi-Fard, A. Lundervold, I. Mencattini, H.Z. Munthe-Kaas // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT ebrahimifardk postliealgebrasandisospectralflows AT lundervolda postliealgebrasandisospectralflows AT mencattinii postliealgebrasandisospectralflows AT munthekaashz postliealgebrasandisospectralflows |
first_indexed |
2025-07-11T01:23:27Z |
last_indexed |
2025-07-11T01:23:27Z |
_version_ |
1837311731288768513 |