Post-Lie Algebras and Isospectral Flows
In this paper we explore the Lie enveloping algebra of a post-Lie algebra derived from a classical R-matrix. An explicit exponential solution of the corresponding Lie bracket flow is presented. It is based on the solution of a post-Lie Magnus-type differential equation.
Saved in:
Date: | 2015 |
---|---|
Main Authors: | Ebrahimi-Fard, K., Lundervold, A., Mencattini, I., Munthe-Kaas, H.Z. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2015
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147113 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Post-Lie Algebras and Isospectral Flows / K. Ebrahimi-Fard, A. Lundervold, I. Mencattini, H.Z. Munthe-Kaas // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
The 2-Transitive Transplantable Isospectral Drums
by: Schillewaert, J., et al.
Published: (2011) -
Leibniz Algebras and Lie Algebras
by: Mason, G., et al.
Published: (2013) -
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation
by: Chiba, H.
Published: (2017) -
On Deformations and Contractions of Lie Algebras
by: Fialowski, A., et al.
Published: (2006) -
On Lie Algebroids and Poisson Algebras
by: García-Beltrán, D., et al.
Published: (2012)