Populations of Solutions to Cyclotomic Bethe Equations

We study solutions of the Bethe Ansatz equations for the cyclotomic Gaudin model of [Vicedo B., Young C.A.S., arXiv:1409.6937]. We give two interpretations of such solutions: as critical points of a cyclotomic master function, and as critical points with cyclotomic symmetry of a certain ''...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Varchenko, A., Young, C.A.S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147118
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Populations of Solutions to Cyclotomic Bethe Equations / A. Varchenko, C.A.S Young // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147118
record_format dspace
fulltext
spelling irk-123456789-1471182019-02-14T01:26:33Z Populations of Solutions to Cyclotomic Bethe Equations Varchenko, A. Young, C.A.S. We study solutions of the Bethe Ansatz equations for the cyclotomic Gaudin model of [Vicedo B., Young C.A.S., arXiv:1409.6937]. We give two interpretations of such solutions: as critical points of a cyclotomic master function, and as critical points with cyclotomic symmetry of a certain ''extended'' master function. In finite types, this yields a correspondence between the Bethe eigenvectors and eigenvalues of the cyclotomic Gaudin model and those of an ''extended'' non-cyclotomic Gaudin model. We proceed to define populations of solutions to the cyclotomic Bethe equations, in the sense of [Mukhin E., Varchenko A., Commun. Contemp. Math. 6 (2004), 111-163, math.QA/0209017], for diagram automorphisms of Kac-Moody Lie algebras. In the case of type A with the diagram automorphism, we associate to each population a vector space of quasi-polynomials with specified ramification conditions. This vector space is equipped with a Z₂-gradation and a non-degenerate bilinear form which is (skew-)symmetric on the even (resp. odd) graded subspace. We show that the population of cyclotomic critical points is isomorphic to the variety of isotropic full flags in this space. 2015 Article Populations of Solutions to Cyclotomic Bethe Equations / A. Varchenko, C.A.S Young // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 82B23; 32S22; 17B81; 81R12 DOI:10.3842/SIGMA.2015.091 http://dspace.nbuv.gov.ua/handle/123456789/147118 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study solutions of the Bethe Ansatz equations for the cyclotomic Gaudin model of [Vicedo B., Young C.A.S., arXiv:1409.6937]. We give two interpretations of such solutions: as critical points of a cyclotomic master function, and as critical points with cyclotomic symmetry of a certain ''extended'' master function. In finite types, this yields a correspondence between the Bethe eigenvectors and eigenvalues of the cyclotomic Gaudin model and those of an ''extended'' non-cyclotomic Gaudin model. We proceed to define populations of solutions to the cyclotomic Bethe equations, in the sense of [Mukhin E., Varchenko A., Commun. Contemp. Math. 6 (2004), 111-163, math.QA/0209017], for diagram automorphisms of Kac-Moody Lie algebras. In the case of type A with the diagram automorphism, we associate to each population a vector space of quasi-polynomials with specified ramification conditions. This vector space is equipped with a Z₂-gradation and a non-degenerate bilinear form which is (skew-)symmetric on the even (resp. odd) graded subspace. We show that the population of cyclotomic critical points is isomorphic to the variety of isotropic full flags in this space.
format Article
author Varchenko, A.
Young, C.A.S.
spellingShingle Varchenko, A.
Young, C.A.S.
Populations of Solutions to Cyclotomic Bethe Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Varchenko, A.
Young, C.A.S.
author_sort Varchenko, A.
title Populations of Solutions to Cyclotomic Bethe Equations
title_short Populations of Solutions to Cyclotomic Bethe Equations
title_full Populations of Solutions to Cyclotomic Bethe Equations
title_fullStr Populations of Solutions to Cyclotomic Bethe Equations
title_full_unstemmed Populations of Solutions to Cyclotomic Bethe Equations
title_sort populations of solutions to cyclotomic bethe equations
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147118
citation_txt Populations of Solutions to Cyclotomic Bethe Equations / A. Varchenko, C.A.S Young // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT varchenkoa populationsofsolutionstocyclotomicbetheequations
AT youngcas populationsofsolutionstocyclotomicbetheequations
first_indexed 2025-07-11T01:23:54Z
last_indexed 2025-07-11T01:23:54Z
_version_ 1837311758187888640