Differential Galois Theory and Lie Symmetries

We study the interplay between the differential Galois group and the Lie algebra of infinitesimal symmetries of systems of linear differential equations. We show that some symmetries can be seen as solutions of a hierarchy of linear differential systems. We show that the existence of rational symmet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Blázquez-Sanz, D., Morales-Ruiz, J.J., Jacques-Arthur Weil
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147127
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Differential Galois Theory and Lie Symmetries / D. Blázquez-Sanz, J.J. Morales-Ruiz, Jacques-Arthur Weil // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147127
record_format dspace
fulltext
spelling irk-123456789-1471272019-02-14T01:26:28Z Differential Galois Theory and Lie Symmetries Blázquez-Sanz, D. Morales-Ruiz, J.J. Jacques-Arthur Weil We study the interplay between the differential Galois group and the Lie algebra of infinitesimal symmetries of systems of linear differential equations. We show that some symmetries can be seen as solutions of a hierarchy of linear differential systems. We show that the existence of rational symmetries constrains the differential Galois group in the system in a way that depends of the Maclaurin series of the symmetry along the zero solution. 2015 Article Differential Galois Theory and Lie Symmetries / D. Blázquez-Sanz, J.J. Morales-Ruiz, Jacques-Arthur Weil // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 12H05; 34M15; 34A26 DOI:10.3842/SIGMA.2015.092 http://dspace.nbuv.gov.ua/handle/123456789/147127 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study the interplay between the differential Galois group and the Lie algebra of infinitesimal symmetries of systems of linear differential equations. We show that some symmetries can be seen as solutions of a hierarchy of linear differential systems. We show that the existence of rational symmetries constrains the differential Galois group in the system in a way that depends of the Maclaurin series of the symmetry along the zero solution.
format Article
author Blázquez-Sanz, D.
Morales-Ruiz, J.J.
Jacques-Arthur Weil
spellingShingle Blázquez-Sanz, D.
Morales-Ruiz, J.J.
Jacques-Arthur Weil
Differential Galois Theory and Lie Symmetries
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Blázquez-Sanz, D.
Morales-Ruiz, J.J.
Jacques-Arthur Weil
author_sort Blázquez-Sanz, D.
title Differential Galois Theory and Lie Symmetries
title_short Differential Galois Theory and Lie Symmetries
title_full Differential Galois Theory and Lie Symmetries
title_fullStr Differential Galois Theory and Lie Symmetries
title_full_unstemmed Differential Galois Theory and Lie Symmetries
title_sort differential galois theory and lie symmetries
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147127
citation_txt Differential Galois Theory and Lie Symmetries / D. Blázquez-Sanz, J.J. Morales-Ruiz, Jacques-Arthur Weil // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT blazquezsanzd differentialgaloistheoryandliesymmetries
AT moralesruizjj differentialgaloistheoryandliesymmetries
AT jacquesarthurweil differentialgaloistheoryandliesymmetries
first_indexed 2025-07-11T01:24:43Z
last_indexed 2025-07-11T01:24:43Z
_version_ 1837311809965522944