Racah Polynomials and Recoupling Schemes of su(1,1)
The connection between the recoupling scheme of four copies of su(1,1), the generic superintegrable system on the 3 sphere, and bivariate Racah polynomials is identified. The Racah polynomials are presented as connection coefficients between eigenfunctions separated in different spherical coordinate...
Gespeichert in:
Datum: | 2015 |
---|---|
1. Verfasser: | Post, S. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2015
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147128 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Racah Polynomials and Recoupling Schemes of su(1,1) / S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On the Limit from q-Racah Polynomials to Big q-Jacobi Polynomials
von: Koornwinder, T.H.
Veröffentlicht: (2011) -
Quantum Analogs of Tensor Product Representations of su(1,1)
von: Groenevelt, W.
Veröffentlicht: (2011) -
Special Functions of Hypercomplex Variable on the Lattice Based on SU(1,1)
von: Faustino, N.
Veröffentlicht: (2013) -
Deformed su(1,1) Algebra as a Model for Quantum Oscillators
von: Jafarov, E.I., et al.
Veröffentlicht: (2012) -
Embeddings of the Racah Algebra into the Bannai-Ito Algebra
von: Genest, V.X., et al.
Veröffentlicht: (2015)