A Perturbation of the Dunkl Harmonic Oscillator on the Line

Let Jσ be the Dunkl harmonic oscillator on R (σ>−1/2. For 0<u<1 and ξ>0, it is proved that, if σ>u−1/2, then the operator U=Jσ+ξ|x|⁻²u, with appropriate domain, is essentially self-adjoint in L²(R,|x|²σdx), the Schwartz space S is a core of Ū¹/², and Ū has a discrete spectrum, which i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Álvarez López, J.A., Calaza, M., Franco, C.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147130
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Perturbation of the Dunkl Harmonic Oscillator on the Line / J.A. Álvarez López, M. Calaza, C. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147130
record_format dspace
fulltext
spelling irk-123456789-1471302019-02-14T01:23:24Z A Perturbation of the Dunkl Harmonic Oscillator on the Line Álvarez López, J.A. Calaza, M. Franco, C. Let Jσ be the Dunkl harmonic oscillator on R (σ>−1/2. For 0<u<1 and ξ>0, it is proved that, if σ>u−1/2, then the operator U=Jσ+ξ|x|⁻²u, with appropriate domain, is essentially self-adjoint in L²(R,|x|²σdx), the Schwartz space S is a core of Ū¹/², and Ū has a discrete spectrum, which is estimated in terms of the spectrum of Ĵσ. A generalization Jσ,τ of Jσ is also considered by taking different parameters σ and τ on even and odd functions. Then extensions of the above result are proved for Jσ,τ, where the perturbation has an additional term involving, either the factor x⁻¹ on odd functions, or the factor x on even functions. Versions of these results on R+ are derived. 2015 Article A Perturbation of the Dunkl Harmonic Oscillator on the Line / J.A. Álvarez López, M. Calaza, C. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 47A55; 47B25; 33C45 DOI:10.3842/SIGMA.2015.059 http://dspace.nbuv.gov.ua/handle/123456789/147130 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let Jσ be the Dunkl harmonic oscillator on R (σ>−1/2. For 0<u<1 and ξ>0, it is proved that, if σ>u−1/2, then the operator U=Jσ+ξ|x|⁻²u, with appropriate domain, is essentially self-adjoint in L²(R,|x|²σdx), the Schwartz space S is a core of Ū¹/², and Ū has a discrete spectrum, which is estimated in terms of the spectrum of Ĵσ. A generalization Jσ,τ of Jσ is also considered by taking different parameters σ and τ on even and odd functions. Then extensions of the above result are proved for Jσ,τ, where the perturbation has an additional term involving, either the factor x⁻¹ on odd functions, or the factor x on even functions. Versions of these results on R+ are derived.
format Article
author Álvarez López, J.A.
Calaza, M.
Franco, C.
spellingShingle Álvarez López, J.A.
Calaza, M.
Franco, C.
A Perturbation of the Dunkl Harmonic Oscillator on the Line
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Álvarez López, J.A.
Calaza, M.
Franco, C.
author_sort Álvarez López, J.A.
title A Perturbation of the Dunkl Harmonic Oscillator on the Line
title_short A Perturbation of the Dunkl Harmonic Oscillator on the Line
title_full A Perturbation of the Dunkl Harmonic Oscillator on the Line
title_fullStr A Perturbation of the Dunkl Harmonic Oscillator on the Line
title_full_unstemmed A Perturbation of the Dunkl Harmonic Oscillator on the Line
title_sort perturbation of the dunkl harmonic oscillator on the line
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147130
citation_txt A Perturbation of the Dunkl Harmonic Oscillator on the Line / J.A. Álvarez López, M. Calaza, C. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT alvarezlopezja aperturbationofthedunklharmonicoscillatorontheline
AT calazam aperturbationofthedunklharmonicoscillatorontheline
AT francoc aperturbationofthedunklharmonicoscillatorontheline
AT alvarezlopezja perturbationofthedunklharmonicoscillatorontheline
AT calazam perturbationofthedunklharmonicoscillatorontheline
AT francoc perturbationofthedunklharmonicoscillatorontheline
first_indexed 2025-07-11T01:25:01Z
last_indexed 2025-07-11T01:25:01Z
_version_ 1837311829180678144