Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras

Methods of construction of the composition function, left- and right-invariant vector fields and differential 1-forms of a Lie group from the structure constants of the associated Lie algebra are proposed. It is shown that in the second canonical coordinates these problems are reduced to the matrix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Magazev, A.A., Mikheyev, V.V., Shirokov, I.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147137
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras / A.A. Magazev, V.V. Mikheyev, I.V. Shirokov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Methods of construction of the composition function, left- and right-invariant vector fields and differential 1-forms of a Lie group from the structure constants of the associated Lie algebra are proposed. It is shown that in the second canonical coordinates these problems are reduced to the matrix inversions and matrix exponentiations, and the composition function can be represented in quadratures. Moreover, it is proven that the transition function from the first canonical coordinates to the second canonical coordinates can be found by quadratures.