Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain

We consider the XXX spin-1/2 Heisenberg chain on the circle with an arbitrary twist. We characterize its spectral problem using the modified algebraic Bethe anstaz and study the scalar product between the Bethe vector and its dual. We obtain modified Slavnov and Gaudin-Korepin formulas for the model...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Belliard, S., Pimenta, R.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147162
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain / S. Belliard, R.A. Pimenta // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147162
record_format dspace
spelling irk-123456789-1471622019-02-14T01:24:47Z Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain Belliard, S. Pimenta, R.A. We consider the XXX spin-1/2 Heisenberg chain on the circle with an arbitrary twist. We characterize its spectral problem using the modified algebraic Bethe anstaz and study the scalar product between the Bethe vector and its dual. We obtain modified Slavnov and Gaudin-Korepin formulas for the model. Thus we provide a first example of such formulas for quantum integrable models without U(1) symmetry characterized by an inhomogenous Baxter T-Q equation. 2015 Article Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain / S. Belliard, R.A. Pimenta // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 37 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 82B23; 81R12 DOI:10.3842/SIGMA.2015.099 http://dspace.nbuv.gov.ua/handle/123456789/147162 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider the XXX spin-1/2 Heisenberg chain on the circle with an arbitrary twist. We characterize its spectral problem using the modified algebraic Bethe anstaz and study the scalar product between the Bethe vector and its dual. We obtain modified Slavnov and Gaudin-Korepin formulas for the model. Thus we provide a first example of such formulas for quantum integrable models without U(1) symmetry characterized by an inhomogenous Baxter T-Q equation.
format Article
author Belliard, S.
Pimenta, R.A.
spellingShingle Belliard, S.
Pimenta, R.A.
Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Belliard, S.
Pimenta, R.A.
author_sort Belliard, S.
title Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain
title_short Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain
title_full Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain
title_fullStr Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain
title_full_unstemmed Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain
title_sort slavnov and gaudin-korepin formulas for models without u(1) symmetry: the twisted xxx chain
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147162
citation_txt Slavnov and Gaudin-Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain / S. Belliard, R.A. Pimenta // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 37 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT belliards slavnovandgaudinkorepinformulasformodelswithoutu1symmetrythetwistedxxxchain
AT pimentara slavnovandgaudinkorepinformulasformodelswithoutu1symmetrythetwistedxxxchain
first_indexed 2025-07-11T01:30:16Z
last_indexed 2025-07-11T01:30:16Z
_version_ 1837312165004967936
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 11 (2015), 099, 12 pages Slavnov and Gaudin–Korepin Formulas for Models without U(1) Symmetry: the Twisted XXX Chain Samuel BELLIARD † and Rodrigo A. PIMENTA ‡§ † Laboratoire de Physique Théorique et Modélisation (CNRS UMR 8089), Université de Cergy-Pontoise, F-95302 Cergy-Pontoise, France E-mail: samuel.belliard@u-cergy.fr ‡ Departamento de F́ısica, Universidade Federal de São Carlos, Caixa Postal 676, CEP 13565-905, São Carlos, Brasil E-mail: pimenta@df.ufscar.br § Physics Department, University of Miami, P.O. Box 248046, FL 33124, Coral Gables, USA Received September 02, 2015, in final form December 02, 2015; Published online December 04, 2015 http://dx.doi.org/10.3842/SIGMA.2015.099 Abstract. We consider the XXX spin- 12 Heisenberg chain on the circle with an arbi- trary twist. We characterize its spectral problem using the modified algebraic Bethe anstaz and study the scalar product between the Bethe vector and its dual. We obtain modified Slavnov and Gaudin–Korepin formulas for the model. Thus we provide a first example of such formulas for quantum integrable models without U(1) symmetry characterized by an inhomogenous Baxter T-Q equation. Key words: algebraic Bethe ansatz; integrable spin chain; scalar product 2010 Mathematics Subject Classification: 82B23; 81R12 The study of quantum integrable models with U(1) symmetry by the Bethe ansatz (BA) methods [4, 11, 34] provides exact solutions which found applications in a wide range of do- mains such as: statistical physics, condensed matter physics, high energy physics, mathematical physics, etc. One of the major accomplishments of the method has been the obtaining of form factors, for models related to gl2 and gl3 families of symmetry, in the compact form of deter- minants [8, 9, 21, 22, 24, 26, 31]. In particular, for models related to the gl2 symmetry, the key results are the Slavnov [35] and the Gaudin–Korepin [19, 20, 25] formulas, which provide, respectively, the scalar product between an eigenstate and an arbitrary state and the norm of the eigenstates. In the case of models without U(1) symmetry, the usual BA techniques in general fail to provide a complete description of the spectrum1. Thus alternative methods have been de- veloped, for instance, the separation of variables (SoV) [15, 16, 23, 30, 33], the commuting transfer matrices method [3], the functional method [18] or the q-Onsager approach [2]. Recently, key steps have been accomplished for the Bethe ansatz solution of such models. On the one hand, a new family of inhomogeneous Baxter T-Q equation to determine the eigenvalues has been proposed by the off-diagonal Bethe ansatz (ODBA) [12, 37]. On the other hand, the construction of the off-shell Bethe vector has been done in the context of a modified algebraic Bethe ansatz (MABA) approach [1, 5, 6, 10]. Let us remember that previous developments in the BA technique, in particular the obtainment of the eigenvectors of the XXX chain on the segment with upper-triangular boundaries [7], brought important insights to the MABA. 1In some cases, some gauge transformation can allow to apply the ABA, see for example the XYZ spin chain [4, 36]. For the XXX case, that we consider here, the GL(2) symmetry allows one to restore the U(1) symmetry [14] and the usual ABA applies, provided that the twist is a non-singular matrix. Also, in the context of open XXZ spin chains, constraints on the parameters of the model allow one to apply the usual techniques, see [28]. mailto:samuel.belliard@u-cergy.fr mailto:pimenta@df.ufscar.br http://dx.doi.org/10.3842/SIGMA.2015.099 2 S. Belliard and R.A. Pimenta Here, we consider the question of the scalar product between the Bethe vectors obtained from the modified algebraic Bethe ansatz. For simplicity, we consider the case of the isotropic spin−1 2 Heisenberg chain on the circle with an arbitrary twist. This is the simplest model which can be considered by the MABA. In fact, its solution contains the main features entailed by the method: the spectrum is characterized by an inhomogeneous Baxter T-Q relation and the off-shell Bethe vector is generated by a modified creation operator. In this context, we obtain a modified Slavnov formula for the scalar product between an on-shell Bethe state and its off-shell dual. The formula (see (17)) is given in terms of a determinant depending on the Jacobian of the inhomogenous eigenvalue expression. Moreover, it contains a new factor related to a certain expansion of the Bethe vector. The square of the norm, i.e., the modified Gaudin–Korepin formula (see (19)), is obtained by a limit. As expected, the case with general integrable open boundary, which also breaks the U(1) symmetry, has the same structure and will be presented in a separated publication. The isotropic spin−1 2 Heisenberg chain on the circle with an arbitrary twist is given by the Hamiltonian H = N∑ k=1 ( σxk ⊗ σxk+1 + σyk ⊗ σ y k+1 + σzk ⊗ σzk+1 ) (1) subject to the following boundary conditions γσxN+1 = κ̃2 + κ2 − κ2 + − κ2 − 2 σx1 + i κ2 − κ̃2 − κ2 + + κ2 − 2 σy1 + (κκ− − κ̃κ+)σz1 , γσyN+1 = i κ̃2 − κ2 − κ2 + + κ2 − 2 σx1 + κ̃2 + κ2 + κ2 + + κ2 − 2 σy1 − i(κ̃κ+ + κκ−)σz1 , γσzN+1 = (κκ+ − κ̃κ−)σx1 + i(κ̃κ− + κκ+)σy1 + (κ̃κ+ κ+κ−)σz1 . The twist parameters {κ, κ̃, κ+, κ−} ∈ C4 are generic and γ = κ̃κ − κ+κ−. The Pauli matri- ces2 σαk with α = x, y, z act non trivially on the kth space of the quantum space H = ⊗Nk=1Vk with Vk = C2. The Hamiltonian (1) is integrable and can be considered within the quantum inverse scatte- ring method [17]. Let us briefly recall this formalism. The key object is the rational R-matrix R(u) = u c + P, which acts on C2 ⊗ C2, with P = σ+ ⊗ σ− + σ− ⊗ σ+ + 1 2(1 + σz ⊗ σz) and c ∈ C∗. From the R-matrix, we construct the monodromy matrix Ta(u) = Ra1(u− θ1) · · ·RaN (u− θN ) = ( t11(u) t12(u) t21(u) t22(u) ) a , which acts on C2 ⊗H and with {θ̄} = {θ1, . . . θN} ∈ CN being the inhomogeneity parameters. This monodromy matrix satisfies the RTT relation Rab(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u− v) that encodes commutation relations between the operators {tij(u)}, see Appendix A. The trans- fer matrix, generating function of the conserved quantities of the model, is given by t(u) = Tra ( KaTa(u) ) = κ̃t11(u) + κt22(u) + κ+t21(u) + κ−t12(u), 2σz = ( 1 0 0 −1 ) , σ+ = ( 0 1 0 0 ) , σ− = ( 0 0 1 0 ) , σx = σ+ + σ−, σy = i(σ− − σ+). Slavnov and Gaudin–Korepin Formulas for Models without U(1) Symmetry 3 with K = ( κ̃ κ+ κ− κ ) . (2) The commutation relation between transfer matrices with different spectral parameters [t(u), t(v)] = 0, follows from the RTT relation and the GL(2) invariance of the R-matrix [Rab(u− v),KaKb] = 0. (3) The Hamiltonian (1) is given by H = 2c d du ( ln(t(u)) )∣∣ u→0, θi→0 −N, and thus its spectral problem is the same of the one of the transfer matrix. The diagonalization of the transfer matrix can be obtained by means of the MABA [1, 5, 6, 10] and leads to an inhomogeneous Baxter T-Q equation. In order to do that, we introduce the following transformation of the twist matrix (2) K = LDL with L = µ 1 2 ( 1 ρ κ− ρ κ+ 1 ) , D = ( κ̃− ρ 0 0 κ− ρ ) , µ = κ̃+ κ− ρ κ̃+ κ− 2ρ and ρ2 − (κ̃+ κ)ρ+ κ+κ− = 0. By means of this transformation, we can obtain a modified monodromy matrix T (u) = LT (u)L with entries given by modified operators {νij(u)}. They are expressed in terms of the initial {tij(u)} operators by ν11(u) = µ ( t11(u) + ρ κ+ t12(u) + ρ κ− t21(u) + ρ2 κ+κ− t22(u) ) , ν12(u) = µ ( t12(u) + ρ κ− (t11(u) + t22(u)) + ( ρ κ− )2 t21(u) ) , ν21(u) = µ ( t21(u) + ρ κ+ (t11(u) + t22(u)) + ( ρ κ+ )2 t12(u) ) , ν22(u) = µ ( t22(u) + ρ κ+ t12(u) + ρ κ− t21(u) + ρ2 κ+κ− t11(u) ) . It follows that the transfer matrix has a modified diagonal form given by t(u) = Tr ( DT̄ (u) ) = (κ̃− ρ)ν11(u) + (κ− ρ)ν22(u). To construct the Bethe vector we use the usual highest weight representation and the highest weight vector |0〉 = ( 1 0 )⊗N . 4 S. Belliard and R.A. Pimenta The actions of the operators {tij(u)} on it are given by tii(u)|0〉 = λi(u)|0〉, t21(u)|0〉 = 0, with λ1(u) = N∏ i=1 u− θi + c c , λ2(u) = N∏ i=1 u− θi c . (4) For the dual Bethe vector we use the dual highest weight vector 〈0| = (1, 0)⊗ N , with the actions 〈0|tii(u) = λi(u)〈0|, 〈0|t12(u) = 0, 〈0|0〉 = 1. For the operators {νij(u)}, we have a modified action on the highest weight vector. We can show that ν11(u)|0〉 = λ1(u)|0〉+ ρ κ+ ν12(u)|0〉, (5) ν22(u)|0〉 = λ2(u)|0〉+ ρ κ+ ν12(u)|0〉, (6) ν21(u)|0〉 = ρ κ+ ( λ1(u) + λ2(u) ) |0〉+ ( ρ κ+ )2 ν12(u)|0〉. (7) We have thus all the ingredients to implement the MABA. We will use the notation ū with #ū = M for the set of M variables {u1, u2, . . . , uM}. If the element ui is removed, we note ūi = {u1, u2, . . . , ui−1, ui+1, . . . , uM}. If we also remove the element uj , we note ūij = ū/{ui, uj}. For products of functions (see (8) bellow) or of operators {νij(u)}, we use the convention g(u, ū) = M∏ i=1 g(u, ui), g(v̄, ū) = M∏ i=1 M∏ j=1 g(vj , ui), g(ui, ūi) = M∏ j=1,j 6=i g(ui, uj), νij(ū) = M∏ k=1 νij(uk). The functions g(u, v) = c u− v , f(u, v) = 1 + g(u, v) = u− v + c u− v (8) will be widely used. Let us consider the vector BM (ū) = ν12(u1) · · · ν12(uM )|0〉 = ν12(ū)|0〉, (9) and act with the transfer matrix on it. In order to perform this calculation we need to find the action of the operators {νij(u)} on the vector (9). Using the GL(2) invariance (3), it is easy to see that the new operators satisfy the same commutation relations (23), (24), (25) of the operators {tij(u)}, see Appendix A. Thus, using these commutation relations and the action (5), (6), (7), we can show that ν12(u)BM (ū) = BM+1(u, ū), Slavnov and Gaudin–Korepin Formulas for Models without U(1) Symmetry 5 ν11(u)BM (ū) = ρ κ+ BM+1(u, ū) + λ1(u)f(ū, u)BM (ū) + M∑ i=1 g(u, ui)λ1(ui)f(ūi, ui)BM (u, ūi), ν22(u)BM (ū) = ρ κ+ BM+1(u, ū) + λ2(u)f(u, ū)BM (ū) + M∑ i=1 g(ui, u)λ2(ui)f(ui, ūi)BM (u, ūi), ν21(u)BM (ū) = ( ρ κ+ )2 BM+1(u, ū) (10) + ρ κ+ ( ΛMd (u, ū|1, 1)BM (ū) + M∑ i=1 g(ui, u)EMd (ui, ūi|1, 1)BM (u, ūi) ) +  M∑ i=1 F (u, ui, ūi)BM−1(ūi) + ∑ 1≤i<j≤M G(u, ui, uj , ūij)BM−1(u, ūij)  , with ΛMd (u, ū|x, y) = xf(ū, u)λ1(u) + yf(u, ū)λ2(u), EMd (ui, ūi|x, y) = −xf(ūi, ui)λ1(ui) + yf(ui, ūi)λ2(ui), F (u, ui, ūi) = g(u, ui)λ1(u)λ2(ui)f(u, ūi)f(ūi, ui) + g(ui, u)λ1(ui)λ2(u)f(ui, ūi)f(ūi, u), G(u, ui, uj , ūij) = g(u, ui)g(uj , u)λ1(ui)λ2(uj)f(ui, uj)f(ui, ūij)f(ūij , uj) + g(u, uj)g(ui, u)λ1(uj)λ2(ui)f(uj , ui)f(uj , ūij)f(ūij , ui), and where we have used the functional identities f(ū, u) + M∑ i=1 g(u, ui)f(ūi, ui) = 1, f(u, ū) + M∑ i=1 g(ui, u)f(ui, ūi) = 1. It follows that the action of the transfer matrix is given by t(u)BM (ū) = κ− µ BM+1(u, ū) + ΛMd (u, ū|κ̃− ρ, κ− ρ)BM (ū) + M∑ i=1 g(ui, u)EMd (ui, ūi|κ̃− ρ, κ− ρ)BM (u, ūi), (11) where we have used the relation ρ κ+ (κ̃+κ−2ρ) = κ− µ . The new term BM+1(u, ū) is characteristic for models which break the U(1) symmetry. From the formula (11) we can obtain, by limit the upper triangular case κ− = 0 and the diagonal case κ− = κ+ = 0. The Bethe ansatz solution is then obtained by requiring that EMd (ui, ūi|κ̃ − ρ, κ − ρ) = 0 for M = 0, . . . , N . Only the part with positive total spin contributes to the solution. Here to complete the MABA we must thus find the action of the operator ν12(u) on the Bethe vector (9) when M = N . In this case the 2N independent diagonal Bethe vectors with M ≤ N and partitions of N variables are contained in the vector, see Appendix B for the expression of the Bethe vector in terms of the initial operator t12(u). This allows us to find an off-shell action with a wanted/unwanted form κ− µ BN+1(u, ū) = ΛNg (u, ū)BN (ū) + N∑ i=1 g(ui, u)ENg (ui, ūi)BN (u, ūi), (12) 6 S. Belliard and R.A. Pimenta ΛNg (u, ū) = 2ρλ1(u)λ2(u)g(u, ū), ENg (ui, ūi) = 2ρλ1(ui)λ2(ui)g(ui, ūi). This action can be proved following the method given in [13] and will be considered elsewhere. Finally, from (11) and (12), we obtain the off-shell equation with generic ū with #ū = N , t(u)BN (ū) = ΛN (u, ū)BN (ū) + N∑ i=1 g(ui, u)EN (ui, ūi)BN (u, ūi), with an inhomogeneous eigenvalue ΛN (u, ū) = (κ̃− ρ)λ1(u)f(ū, u) + (κ− ρ)λ2(u)f(u, ū) + 2ρλ1(u)λ2(u)g(u, ū), (13) and an inhomogeneous Bethe equation EN (ui, ūi) = −(κ̃− ρ)λ1(ui)f(ūi, ui) + (κ− ρ)λ2(ui)f(ui, ūi) + 2ρλ1(ui)λ2(ui)g(ui, ūi), (14) for i = 1, . . . , N . One can proceed in a similar way for the dual Bethe vector CN (ū) = 〈0|ν21(ū), (15) and, in particular, obtain CN (ū)t(u) = ΛN (u, ū)CN (ū) + N∑ i=1 g(ui, u)EN (ui, ūi)CN (u, ūi), with the same eigenvalue and Bethe equations of the Bethe vector (9) with M = N . When the Bethe equations are satisfied, i.e., EN (ui, ūi) = 0 for i = 1, . . . , N , and we consider non-singular solutions of the Bethe equations [29], the on-shell Bethe vectors are eigenstates of the transfer matrix t(u)BN (ū) = ΛN (u, ū)BN (ū), CM (ū)t(u) = ΛN (u, ū)CN (ū). Let us remark that the completeness of the solution given by (13), (14) has been numerically checked for chains with small size. It should be interesting to prove it along the lines of [27]. We are now in position to consider the scalar products for the Bethe vector (9) and (15), namely, SN (ū|v̄) = CN (ū)BN (v̄). (16) From the construction given hereafter, we obtain the modified Slavnov formula of the twisted XXX spin chain characterized by the inhomogeneous Baxter T-Q equation (13). When EN (ui, ūi) = 0, for i = 1, . . . , N , the scalar product (16) has a compact form given by ŜN (ū, v̄) = cN ( µ2 κ̃+ κ− ρ )N WN 0 (ū) DetN ( ∂ ∂ui ΛN (vj , ū) ) DetN ( g(vi, uj) ) (17) with WN 0 (ū) = ( κ− µρ )N 〈0|ν12(ū)|0〉, Slavnov and Gaudin–Korepin Formulas for Models without U(1) Symmetry 7 which is given explicitly in Appendix B. When EN (vi, v̄i) = 0, for i = 1, . . . , N , the scalar product (16) is given by S̃N (ū, v̄) = cN ( µ2 κ̃+ κ− ρ )N WN 0 (v̄) DetN ( ∂ ∂vi ΛN (uj , v̄) ) DetN ( g(ui, vj) ) . (18) We can obtain the square of the norm by imposing the limit ū = v̄. Using the well-known formula for the Cauchy determinant DetN ( g(vi, uj) ) = g(v̄, ū)∏ i<j g(ui, uj)g(vj , vi) , we obtain N N (ū) = ( µ2 κ̃+ κ− ρ )N WN 0 (ū)  N∏ i<j g(ui, uj)g(uj , ui) DetN (Gij), (19) where the matrix elements Gij , for i, j = 1, . . . , N , are given by Gii = 2ρc(λ2(ui)∂uiλ1(ui) + λ1(ui)∂uiλ2(ui)) + (−1)N (κ̃− ρ) c h(ūi, ui)∂uiλ1(ui)− λ1(ui) N∑ j=1,j 6=i h(ūij , ui)  + (κ− ρ) ch(ui, ūi)∂uiλ2(ui) + λ2(ui) N∑ j=1,j 6=i h(ui, ūij)  Gij = (−1)N (κ̃− ρ)λ1(uj)h(ūij , uj)− (κ− ρ)λ2(uj)h(uj , ūij) for i 6= j, with h(u, v) = f(u, v) g(u, v) = u− v + c c , and where we have applied the l’Hospital’s rule to find Gij = lim vj→uj c ∂ ∂ui ΛN (vj , ū) g(vj , ū) . (20) From the conjectured modified Slavnov and Gaudin–Korepin formulas we remark that the ratio, needed for the calculation of the correlations functions, is independent of the WN 0 (ū) and of the constant ( µ2 κ̃+κ−ρ )N . Thus the relevant part of the formula for the correlations functions is given by the Jacobian of the inhomogeneous eigenvalue (13) and it limits (20). To obtain this conjecture we have proceeded in the following way. We start from the following hypothesis: • We can impose the Bethe equations (14), EN (vi, v̄i) = 0 for i = 1, . . . , N , by linearizing the quadratic terms λ1(vi)λ2(vi) in terms of λ1(vi) and λ2(vi). • The usual Slavnov formula must be recovered in the U(1) symmetric limit and thus the modified Slavnov formula contain the determinant of the Jacobian of the inhomogenous eigenvalue (13). 8 S. Belliard and R.A. Pimenta For the U(1) symmetric case (κ+ = κ− = 0), the scalar product between an on-shell Bethe vector and an off-shell Bethe vector is given by the Slavnov formula [35]. If the v̄ are on-shell, i.e., EMd (vi, v̄i|κ̃, κ) = 0 for i = 1, . . . ,M , we have S̃Md (ū, v̄) = ( c κ̃ )M λ2(v̄) DetM ( ∂ ∂vi ΛMd (uj , v̄, κ̃, κ) ) DetM (g(ui, vj)) . From the first term of action the (10), for M = N and using (12), we can extract the leading term of the scalar product with N quadratic terms: λ1(ui)λ2(ui) with i = 1, . . . , N . If we impose the Bethe equations (14), EN (vi, v̄i) = 0 for i = 1, . . . , N , by linearizing the quadratic terms λ1(vi)λ2(vi) in terms of λ1(vi) and λ2(vi), this leading term is invariant and is the only contribution at the top order 3N in the λi. This term is proportional to WN 0 (v̄) N∏ i=1 ΛNg (ui, v̄). It allows us to fix the functional to complete the determinant part of the Slavnov formula (18). Indeed, the functional is the same, up to a constant, when we consider the leading coefficient in the λi and use the identity DetN ( ∂ ∂vi ΛNg (uj , v̄) ) = 1 cN DetN ( g(uj , vi) ) N∏ i=1 ΛNg (ui, v̄). In the U(1) symmetry limit, ρ = 0, we have WN 0 (v̄) = λ2(v̄)(κκ̃ + 1)N and restore the usual Slavnov formula up to a constant. The formula (17) can de derived, also up to a constant, in a similar way starting from the action of the operator ν12(u) on the dual Bethe vector (15). This way to find the modified Slavnov formula does not fix the constant. Let us fix this constant by considering the simplest case N = 1 and discuss the difficulties to find the good parametrization for the off-shell scalar product, which allows us to find the modified Slavnov formula by linearizing the quadratic term of the Bethe equation, for general N . In the case N = 1, the good one is S1(u, v) = µ ( S1 d(u, v) + µ κ̃+ κ− ρ ( Λ1 g(u, v)W 1 0 (v) + Λ1 g(v, u)W 1 0 (u) )) (21) with W 1 0 (u) = λ1(u) + λ2(u), S1 d(u, v) = g(u, v)(λ1(v)λ2(u)− λ1(u)λ2(v)). To obtain the Slavnov formula we use the Bethe equation to linearize the quadratic term that depends on v λ1(v)λ2(v) = 1 2ρ ( (κ̃− ρ)λ1(v)− (κ− ρ)λ2(v) ) (22) and thus we arrive to our result S1 E(v)=0(u, v) = µ2 κ̃+ κ− ρ g(v, u)W 1 0 (v) ( (κ̃− ρ)λ1(u)− (κ− ρ)λ2(u)− 2ρλ1(u)λ2(u) ) . If we also linearize the second quadratic term, we find zero for u 6= v, which shows the orthogo- nality of the Bethe vectors and the modified Gaudin–Korepin formula (19) for u = v. Slavnov and Gaudin–Korepin Formulas for Models without U(1) Symmetry 9 The parametrization (21) is not unique; for instance, from the projection on the {tij(u)} operator, see Appendix B, we find S1(u, v) = µ2S1 d(u, v) + µ2 ρ2 κ+κ− ( λ1(u) + λ2(u) )( λ1(v) + λ1(v) ) that is equivalent to (21) when we specify the explicit form of the λi(u) (4). In this case the quadratic term λ1(v)λ2(v) does not appear and the formula (22) could not be used directly. Moreover, the recursion relation (10) gives also another parametrization in order 3 in the λi(u) like (21) but with terms of the form λi(u)λi(v). In this case the linearization of the quadratic term (22) could be used but does not lead directly to the modified Slavnov formula. A systematic way to fix the good parametrization of the off-shell scalar product (i.e., a parametrization that reduces to the modified Slavnov formula, when we linearize the quadratic terms λ1(vi)λ2(vi) from the inhomogenous Bethe equations) remains an open problem for the moment and will be discussed elsewhere. The conjecture can be tested exactly for N = 1, which allows us to fix the constant, and then the cases N = 2 and N = 3 have been checked numerically to support the conjecture. Finally, let us point out another problem which is worth to be considered: the construction of an explicit algebraic link between the MABA solution and the solution obtained by means of the usual ABA, see, e.g., [32]. One first step to address this problem, at least at the spectral level, is to equate the eigenvalue expression found from the MABA (13) with the ones obtained from the usual ABA. The simplest eigenvalue from the usual ABA is given by αλ1(u) + (κ+ κ̃− α)λ2(u) with α = 1 2(κ + κ̃ + √ (κ− κ̃)2 + 4κ+κ−) an eigenvalue of the twist matrix K. As a result, we can obtain constraints on the parameters ū that, up to symmetrization, provide one solution of the Bethe equations (14). More details will be given elsewhere. A Rational functions and commutations relations Let us introduce the commutation relations of the tij(u) given by [tij(u), tkl(v)] = g(u, v) ( tkj(v)til(u)− tkj(u)til(v) ) . In particular, we will only use the following ones t11(u)t12(v) = f(v, u)t12(v)t11(u) + g(u, v)t12(u)t11(v), (23) t22(u)t12(v) = f(u, v)t12(v)t22(u) + g(v, u)t12(u)t22(v), (24) t21(u)t12(v) = t12(u)t21(v) + g(u, v) ( t11(v)t22(u)− t11(u)t22(v) ) . (25) The functions f and g are given by (8). They allow us to find the action on the multiple product of t12(u) that forms a string of length M , namely, t11(u)t12(v̄) = f(v̄, u)t12(v̄)t11(u) + M∑ i=1 g(u, vi)f(v̄i, vi)t12(u)t12(v̄i)t11(vi), t22(u)t12(v̄) = f(u, v̄)t12(v̄)t22(u) + M∑ i=1 g(vi, u)f(vi, v̄i)t12(u)t12(v̄i)t22(vi), t21(u)t12(v̄) = t12(v̄)t21(u) + M∑ i=1 f(ui, ūi) ( g(u, ui)t22(ui)t12(ūi)t11(u) + g(xi, y)t22(u)t12(ūi)t11(ui) ) . 10 S. Belliard and R.A. Pimenta B Projection of the Bethe vector The Bethe vector in terms of the operator t12(u) is given by ν12(ū)|0〉 = µN N∑ i=0 ∑ ū→{ūI,ūII} ( ρ κ− )N−i WN i (ūI|ūII)t12(ūII)|0〉, with #ūII = i, #ūI = N − i a partition of the set ū. The sum is over all ordered partitions, denoted ū→ {ūI, ūII}. The coefficient is given by WN i (u1, . . . , uN−i|uN−i+1, . . . , uN ) = SymN−i u1,...,uN−i N−i∏ j=1 WN+1−j N−j (uj |uj+1, . . . , uN )  , where W i i−1(u1|u2, . . . , ui) = f(ū1, u1)λ1(u1) + f(u1, ū1)λ2(u1) = Λi−1 d (u1, ū1, 1, 1) and SymM ū ( F (ū) ) = 1 M ! ∑ σ∈SM F (ūσ), with ūσ = {uσ(1), . . . , uσ(M)} an element of the permutation group SM . The dual Bethe vector in terms of the operator t21(u) is given by 〈0|ν12(ū) = µN N∑ i=0 ∑ ū→{ūI,ūII} ( ρ κ+ )N−i WN i (ūI|ūII)〈0|t21(ūII). Acknowledgements We thank J. Avan, N. Grosjean and R Nepomechie for discussions. R.A.P. would like to thanks the hospitality of the Laboratoire de Physique Théorique et Modélisation at the Université de Cergy-Pontoise where a part of this work was done. S.B. is supported by the Université de Cergy-Pontoise post doctoral fellowship. R.A.P. is supported by Sao Paulo Research Foundation (FAPESP), grants # 2014/00453-8 and # 2014/20364-0. We also thank the referees for their constructive remarks. References [1] Avan J., Belliard S., Grosjean N., Pimenta R.A., Modified algebraic Bethe ansatz for XXZ chain on the segment – III – Proof, Nuclear Phys. B 899 (2015), 229–246, arXiv:1506.0214. [2] Baseilhac P., Koizumi K., Exact spectrum of the XXZ open spin chain from the q-Onsager algebra repre- sentation theory, J. Stat. Mech. Theory Exp. 2007 (2007), P09006, 27 pages, hep-th/0703106. [3] Batchelor M.T., Baxter R.J., O’Rourke M.J., Yung C.M., Exact solution and interfacial tension of the six-vertex model with anti-periodic boundary conditions, J. Phys. A: Math. Gen. 28 (1995), 2759–2770, hep-th/9502040. [4] Baxter R.J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982. [5] Belliard S., Modified algebraic Bethe ansatz for XXZ chain on the segment – I: Triangular cases, Nuclear Phys. B 892 (2015), 1–20, arXiv:1408.4840. [6] Belliard S., Crampé N., Heisenberg XXX model with general boundaries: eigenvectors from algebraic Bethe ansatz, SIGMA 9 (2013), 072, 12 pages, arXiv:1309.6165. http://dx.doi.org/10.1016/j.nuclphysb.2015.08.006 http://arxiv.org/abs/1506.0214 http://dx.doi.org/10.1088/1742-5468/2007/09/P09006 http://arxiv.org/abs/hep-th/0703106 http://dx.doi.org/10.1088/0305-4470/28/10/009 http://arxiv.org/abs/hep-th/9502040 http://dx.doi.org/10.1016/j.nuclphysb.2015.01.003 http://dx.doi.org/10.1016/j.nuclphysb.2015.01.003 http://arxiv.org/abs/1408.4840 http://dx.doi.org/10.3842/SIGMA.2013.072 http://arxiv.org/abs/1309.6165 Slavnov and Gaudin–Korepin Formulas for Models without U(1) Symmetry 11 [7] Belliard S., Crampé N., Ragoucy E., Algebraic Bethe ansatz for open XXX model with triangular boundary matrices, Lett. Math. Phys. 103 (2013), 493–506, arXiv:1209.4269. [8] Belliard S., Pakuliak S., Ragoucy E., Slavnov N.A., The algebraic Bethe ansatz for scalar products in SU(3)- invariant integrable models, J. Stat. Mech. Theory Exp. 2012 (2012), P10017, 25 pages, arXiv:1207.0956. [9] Belliard S., Pakuliak S., Ragoucy E., Slavnov N.A., Form factors in SU(3)-invariant integrable models, J. Stat. Mech. Theory Exp. 2013 (2013), P04033, 16 pages, arXiv:1211.3968. [10] Belliard S., Pimenta R.A., Modified algebraic Bethe ansatz for XXZ chain on the segment – II – General cases, Nuclear Phys. B 894 (2015), 527–552, arXiv:1412.7511. [11] Bethe H., Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen Atomkette, Z. Phys. 71 (1931), 205–226. [12] Cao J., Yang W., Shi K., Wang Y., Off-diagonal Bethe ansatz and exact solution a topological spin rin, Phys. Rev. Lett. 111 (2013), 137201, 5 pages, arXiv:1305.7328. [13] Crampé N., Algebraic Bethe ansatz for the totally asymmetric simple exclusion process with boundaries, J. Phys. A: Math. Theor. 48 (2015), 08FT01, 12 pages, arXiv:1411.7954. [14] de Vega H.J., Families of commuting transfer matrices and integrable models with disorder, Nuclear Phys. B 240 (1984), 495–513. [15] Derkachev S.É., The R-matrix factorization, Q-operator, and variable separation in the case of the XXX spin chain with the SL(2,C) symmetry group, Theoret. and Math. Phys. 169 (2011), 1539–1550. [16] Derkachov S.É., Korchemsky G.P., Manashov A.N., Separation of variables for the quantum SL(2,R) spin chain, J. High Energy Phys. 2003 (2003), no. 7, 047, 30 pages. [17] Faddeev L.D., Takhtadzhyan L.A., Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model, J. Sov. Math. 24 (1984), 241–267. [18] Galleas W., Functional relations from the Yang–Baxter algebra: eigenvalues of the XXZ model with non- diagonal twisted and open boundary conditions, Nuclear Phys. B 790 (2008), 524–542, arXiv:0708.0009. [19] Gaudin M., La fonction d’onde de Bethe, Collection du Commissariat à l’Énergie Atomique: Série Scien- tifique, Masson, Paris, 1983. [20] Gaudin M., McCoy B.M., Wu T.T., Normalization sum for the Bethe’s hypothesis wave functions of the Heisenberg–Ising chain, Phys. Rev. D 23 (1981), 417–419. [21] Kitanine N., Kozlowski K.K., Maillet J.M., Niccoli G., Slavnov N.A., Terras V., Correlation functions of the open XXZ chain. I, J. Stat. Mech. Theory Exp. 2007 (2007), P10009, 37 pages, arXiv:0707.1995. [22] Kitanine N., Kozlowski K.K., Maillet J.M., Niccoli G., Slavnov N.A., Terras V., Correlation functions of the open XXZ chain. II, J. Stat. Mech. Theory Exp. 2008 (2008), P07010, 33 pages, arXiv:0803.3305. [23] Kitanine N., Maillet J.M., Niccoli G., Terras V., On determinant representations of scalar products and form factors in the SoV approach: the XXX case, arXiv:1506.02630. [24] Kitanine N., Maillet J.M., Terras V., Form factors of the XXZ Heisenberg spin- 1 2 finite chain, Nuclear Phys. B 554 (1999), 647–678, math-ph/9807020. [25] Korepin V.E., Calculation of norms of Bethe wave functions, Comm. Math. Phys. 86 (1982), 391–418. [26] Korepin V.E., Bogoliubov N.M., Izergin A.G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993. [27] Mukhin E., Tarasov V., Varchenko A., Bethe algebra of homogeneous XXX Heisenberg model has simple spectrum, Comm. Math. Phys. 288 (2009), 1–42, arXiv:0706.0688. [28] Nepomechie R.I., Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms, J. Phys. A: Math. Gen. 37 (2004), 433–440, special issue on recent advances in the theory of quantum integrable systems, hep-th/0304092. [29] Nepomechie R.I., Wang C., Algebraic Bethe ansatz for singular solutions, J. Phys. A: Math. Theor. 46 (2013), 325002, 8 pages, arXiv:1304.7978. [30] Niccoli G., Terras V., Antiperiodic XXZ chains with arbitrary spins: complete eigenstate construction by functional equations in separation of variables, Lett. Math. Phys. 105 (2015), 989–1031, arXiv:1411.6488. [31] Pakuliak S., Ragoucy E., Slavnov N.A., Zero modes method and form factors in quantum integrable models, Nuclear Phys. B 893 (2015), 459–481, arXiv:1412.6037. http://dx.doi.org/10.1007/s11005-012-0601-6 http://arxiv.org/abs/1209.4269 http://dx.doi.org/10.1088/1742-5468/2012/10/P10017 http://arxiv.org/abs/1207.0956 http://dx.doi.org/10.1088/1742-5468/2013/04/P04033 http://arxiv.org/abs/1211.3968 http://dx.doi.org/10.1016/j.nuclphysb.2015.03.016 http://arxiv.org/abs/1412.7511 http://dx.doi.org/10.1007/BF01341708 http://dx.doi.org/10.1103/PhysRevLett.111.137201 http://arxiv.org/abs/1305.7328 http://dx.doi.org/10.1088/1751-8113/48/8/08FT01 http://arxiv.org/abs/1411.7954 http://dx.doi.org/10.1016/0550-3213(84)90240-2 http://dx.doi.org/10.1007/s11232-011-0131-x http://dx.doi.org/10.1088/1126-6708/2003/07/047 http://dx.doi.org/10.1007/BF01087245 http://dx.doi.org/10.1016/j.nuclphysb.2007.09.011 http://arxiv.org/abs/0708.0009 http://dx.doi.org/10.1103/PhysRevD.23.417 http://dx.doi.org/10.1088/1742-5468/2007/10/P10009 http://arxiv.org/abs/0707.1995 http://dx.doi.org/10.1088/1742-5468/2008/07/P07010 http://arxiv.org/abs/0803.3305 http://arxiv.org/abs/1506.02630 http://dx.doi.org/10.1016/S0550-3213(99)00295-3 http://dx.doi.org/10.1016/S0550-3213(99)00295-3 http://arxiv.org/abs/math-ph/9807020 http://dx.doi.org/10.1007/BF01212176 http://dx.doi.org/10.1017/CBO9780511628832 http://dx.doi.org/10.1007/s00220-009-0733-4 http://arxiv.org/abs/0706.0688 http://dx.doi.org/10.1088/0305-4470/37/2/012 http://dx.doi.org/10.1088/0305-4470/37/2/012 http://arxiv.org/abs/hep-th/0304092 http://dx.doi.org/10.1088/1751-8113/46/32/325002 http://arxiv.org/abs/1304.7978 http://dx.doi.org/10.1007/s11005-015-0759-9 http://arxiv.org/abs/1411.6488 http://dx.doi.org/10.1016/j.nuclphysb.2015.02.006 http://arxiv.org/abs/1412.6037 12 S. Belliard and R.A. Pimenta [32] Ribeiro G.A.P., Martins M.J., Galleas W., Integrable SU(N) vertex models with general toroidal boundary conditions, Nuclear Phys. B 675 (2003), 567–583, nlin.SI/0308011. [33] Sklyanin E.K., Quantum inverse scattering method. Selected topics, in Quantum Group and Quan- tum Integrable Systems, Nankai Lectures Math. Phys., World Sci. Publ., River Edge, NJ, 1992, 63–97, hep-th/9211111. [34] Sklyanin E.K., Takhtadzhyan L.A., Faddeev L.D., Quantum inverse problem method. I, Theoret. and Math. Phys. 40 (1979), 688–706. [35] Slavnov N.A., Calculation of scalar products of wave functions and form-factors in the framework of the algebraic Bethe ansatz, Theoret. and Math. Phys. 79 (1989), 502–508. [36] Takhtadzhan L.A., Faddeev L.D., The quantum method for the inverse problem and the XYZ Heisenberg model, Russian Math. Surveys 34 (1979), no. 5, 11–68. [37] Wang Y., Yang W., Cao J., Shi K., On the inhomogeneous T-Q relation for quantum integrable models, arXiv:1506.02512. http://dx.doi.org/10.1016/j.nuclphysb.2003.09.058 http://arxiv.org/abs/nlin.SI/0308011 http://arxiv.org/abs/hep-th/9211111 http://dx.doi.org/10.1007/BF01018718 http://dx.doi.org/10.1007/BF01018718 http://dx.doi.org/10.1007/BF01016531 http://dx.doi.org/10.1070/RM1979v034n05ABEH003909 http://arxiv.org/abs/1506.02512 A Rational functions and commutations relations B Projection of the Bethe vector References