Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn

We present explicit formulas for the Macdonald polynomials of types Cn and Dn in the one-row case. In view of the combinatorial structure, we call them ''tableau formulas''. For the construction of the tableau formulas, we apply some transformation formulas for the basic hypergeo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Feigin, B., Hoshino, A., Noumi, M., Shibahara, J., Shiraishi, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147163
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn / B. Feigin, A. Hoshino, M. Noumi, J. Shibahara, J. Shiraishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147163
record_format dspace
spelling irk-123456789-1471632019-02-14T01:25:02Z Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn Feigin, B. Hoshino, A. Noumi, M. Shibahara, J. Shiraishi, J. We present explicit formulas for the Macdonald polynomials of types Cn and Dn in the one-row case. In view of the combinatorial structure, we call them ''tableau formulas''. For the construction of the tableau formulas, we apply some transformation formulas for the basic hypergeometric series involving very well-poised balanced ₁₂W₁₁ series. We remark that the correlation functions of the deformed W algebra generators automatically give rise to the tableau formulas when we principally specialize the coordinate variables. 2015 Article Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn / B. Feigin, A. Hoshino, M. Noumi, J. Shibahara, J. Shiraishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 14 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D52; 33D80 DOI:10.3842/SIGMA.2015.100 http://dspace.nbuv.gov.ua/handle/123456789/147163 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present explicit formulas for the Macdonald polynomials of types Cn and Dn in the one-row case. In view of the combinatorial structure, we call them ''tableau formulas''. For the construction of the tableau formulas, we apply some transformation formulas for the basic hypergeometric series involving very well-poised balanced ₁₂W₁₁ series. We remark that the correlation functions of the deformed W algebra generators automatically give rise to the tableau formulas when we principally specialize the coordinate variables.
format Article
author Feigin, B.
Hoshino, A.
Noumi, M.
Shibahara, J.
Shiraishi, J.
spellingShingle Feigin, B.
Hoshino, A.
Noumi, M.
Shibahara, J.
Shiraishi, J.
Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Feigin, B.
Hoshino, A.
Noumi, M.
Shibahara, J.
Shiraishi, J.
author_sort Feigin, B.
title Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn
title_short Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn
title_full Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn
title_fullStr Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn
title_full_unstemmed Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn
title_sort tableau formulas for one-row macdonald polynomials of types cn and dn
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/147163
citation_txt Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn / B. Feigin, A. Hoshino, M. Noumi, J. Shibahara, J. Shiraishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 14 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT feiginb tableauformulasforonerowmacdonaldpolynomialsoftypescnanddn
AT hoshinoa tableauformulasforonerowmacdonaldpolynomialsoftypescnanddn
AT noumim tableauformulasforonerowmacdonaldpolynomialsoftypescnanddn
AT shibaharaj tableauformulasforonerowmacdonaldpolynomialsoftypescnanddn
AT shiraishij tableauformulasforonerowmacdonaldpolynomialsoftypescnanddn
first_indexed 2025-07-11T01:30:27Z
last_indexed 2025-07-11T01:30:27Z
_version_ 1837312175790620672
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 11 (2015), 100, 21 pages Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn ? Boris FEIGIN †1, Ayumu HOSHINO †2, Masatoshi NOUMI † 3 , Jun SHIBAHARA †4 and Jun’ichi SHIRAISHI † 5 †1 National Research University Higher School of Economics, International Laboratory of Representation Theory and Mathematical Physics, Moscow, Russia E-mail: borfeigin@gmail.com †2 Kagawa National College of Technology, 355 Chokushi-cho, Takamatsu, Kagawa 761-8058, Japan E-mail: hoshino@t.kagawa-nct.ac.jp †3 Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan E-mail: noumi@math.kobe-u.ac.jp †4 Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu city, Shizuoka 431-3192, Japan E-mail: s070521math@yahoo.co.jp †5 Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Tokyo 153-8914, Japan E-mail: shiraish@ms.u-tokyo.ac.jp Received May 19, 2015, in final form November 26, 2015; Published online December 05, 2015 http://dx.doi.org/10.3842/SIGMA.2015.100 Abstract. We present explicit formulas for the Macdonald polynomials of types Cn and Dn in the one-row case. In view of the combinatorial structure, we call them “tableau formulas”. For the construction of the tableau formulas, we apply some transformation formulas for the basic hypergeometric series involving very well-poised balanced 12W11 series. We remark that the correlation functions of the deformed W algebra generators automatically give rise to the tableau formulas when we principally specialize the coordinate variables. Key words: Macdonald polynomials; deformed W algebras 2010 Mathematics Subject Classification: 33D52; 33D80 1 Introduction I.G. Macdonald introduced the symmetric polynomials Pλ(x; q, t) as a (q, t)-deformation of the Schur polynomials sλ(x). Then he extended this construction to the cases of the symmetric Lau- rent polynomials invariant under the actions of the Weyl groups of simple root systems [10]. For type An, he gave an explicit combinatorial formula for Pλ(x; q, t), usually called the “tableau formula”. In [1] it was shown that the tableau formula for Pλ(x; q, t) of type An can be in- terpreted as certain specialization of the correlation functions of the deformed W algebras of type An. One of our motivations is to explore a little further the correspondence between the Macdonald polynomials and the deformed W algebras associated with simple root systems. More precisely, we calculate the correlation functions of W algebras of types Cn and Dn with ?This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applica- tions. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html mailto:borfeigin@gmail.com mailto:hoshino@t.kagawa-nct.ac.jp mailto:noumi@math.kobe-u.ac.jp mailto:s070521math@yahoo.co.jp mailto:shiraish@ms.u-tokyo.ac.jp http://dx.doi.org/10.3842/SIGMA.2015.100 http://www.emis.de/journals/SIGMA/OPSFA2015.html 2 B. Feigin, A. Hoshino, M. Noumi, J. Shibahara and J. Shiraishi principal specializations in coordinate variables (Definition 7.8). As a result, we obtain certain combinatorial expressions, which we regard as tableau formulas. Then, on the basis of Lassalle’s explicit formulas [8] (see [4] for a proof and their generalization), we prove that they are actually the Macdonald polynomials of types Cn and Dn in the one-row case (Theorem 7.10). We need to recall briefly the Kashiwara–Nakashima tableaux. In the study of quantum algebras [5], they gave combinatorial descriptions of the crystal bases for the integrable highest weight representations by using the “semi-standard tableaux” of respective types. For the crystal bases of the symmetric tensor representations V (rΛ1) of types Cn and Dn, the semi-standard tableau is defined to be a one-row diagram (r) of size r filled with entries in the ordered set I = {1, 2, . . . , n, n, n− 1, . . . , 1} being arranged in the weakly increasing manner. The orderings of I are defined by (6.1) for Cn and by (4.1) for Dn respectively. For a semi-standard tableau of shape (r), denote by θi the number of the letter i ∈ I in the tableau. Then we have θ1 + θ2 + · · ·+ θn + θn + θn−1 + · · ·+ θ1 = r. For type Dn, we have an aditional condition θnθn = 0 due to the structure of the ordering. We now present the main results of this paper (Theorems 4.3, 6.2 and 6.5). Let P (Cn) (r) (x; q, t, T ) and P (Dn) (r) (x; q, t) be the Macdonald polynomials of types Cn and Dn respectively attached to a single row (r). As for the notation, see Appendix A.2. Theorem 1.1. We have the following tableau formulas in the one-row cases: P (Cn) (r) ( x; q, t, t2/q ) = (q; q)r (t; q)r ∑ θ1+θ2+···+θ1=r ∏ k∈I (t; q)θk (q; q)θk × ∏ 1≤l≤n (tn−l+1qθl+···+θl+1 ; q)θl(t n−l+2qθl+1+···+θl+1−1; q)θl (tn−l+2qθl+···+θl+1−1; q)θl(t n−l+1qθl+1+···+θl+1 ; q)θl × xθ1−θ11 x θ2−θ2 2 · · ·xθn−θnn , (1.1) P (Dn) (r) (x; q, t) = (q; q)r (t; q)r ∑ θ1+θ2+···+θ 1 =r θnθn=0 ∏ k∈I (t; q)θk (q; q)θk × ∏ 1≤l≤n−1 (tn−l−1qθl+θl+1+···+θl+1+1; q)θl(t n−lqθl+1+θl+2+···+θl+1 ; q)θl (tn−lqθl+θl+1+···+θl+1 ; q)θl(t n−l−1qθl+1+θl+2+···+θl+1+1; q)θl × xθ1−θ11 x θ2−θ2 2 · · ·xθn−θnn . (1.2) Here and hereafter, we use the standard notation of q-shifted factorials (z; q)∞ = ∞∏ k=0 (1− qkz), (z; q)k = (z; q)∞ (qkz; q)∞ , k ∈ Z, (a1, a2, . . . , ar; q)k = (a1; q)k(a2; q)k · · · (ar; q)k, k ∈ Z. Remark 1.2. These tableau formulas for P (Cn) (r) (x; q, t, t2/q) and P (Dn) (r) (x; q, t) are obtained by principally specializing the correlation functions of the deformedW algebras of types Cn and Dn respectively. See Theorem 7.10. We can extend the tableau formula of type Cn in (1.1) as follows to general q, t and T . Theorem 1.3. Set θ := min(θn, θn) for simplicity of display. We have P (Cn) (r) (x; q, t, T ) = (q; q)r (t; q)r ∑ θ1+θ2+···+θ1=r ∏ k∈I\{n,n} (t; q)θk (q; q)θk (t; q)|θn−θn| (q; q)|θn−θn| Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn 3 × ∏ 1≤l≤n−1 ( (tn−l−1qθl+···+θn−1+|θn−θn|+θn−1+···+θl+1+1; q)θl (tn−lqθl+···+θn−1+|θn−θn|+θn−1+···+θl+1 ; q)θl × (tn−lqθl+1+···θn−1+|θn−θn|+θn−1+···+θl+1 ; q)θl (tn−l−1qθl+1+···+θn−1+|θn−θn|+θn−1+···+θl+1+1; q)θl ) × (T ; q)θ(t nqr−2θ; q)2θ (q; q)θ(Ttn−1qr−θ; q)θ(tn−1qr−2θ+1; q)θ x θ1−θ1 1 x θ2−θ2 2 · · ·xθn−θnn . (1.3) Remark 1.4. At present, we do not know any W algebra which explains the formula (1.3). There are several combinatorial expressions for the Macdonald polynomials studied from some different points of view. See [9, 13, 14] for example. It would be an intriguing problem to find possible connections between those formulas and ours obtained in this paper. This paper is organized as follows. In Sections 2, 3 and 5 we construct the transformation formulas for the basic hypergeometric series for proving our tableau formulas. In Sections 4 and 6, we prove the tableau formulas for the one-row Macdonald polynomials of types Cn and Dn respectively. In Section 7, we recall the deformed W algebras of types Cn and Dn, and then prove that the correlation functions with principal specialization give us the tableau formulas for the Macdonald polynomials of types Cn and Dn in the one-row case respectively. In Appendix A, we recall briefly the Koornwinder polynomials, and the Macdonald polynomials of types Cn and Dn as degenerations of the Koornwinder polynomials. Throughout this paper, we use the standard notation for the basic hypergeometric series as r+1φr [ a1, a2, . . . , ar+1 b1, . . . , br ; q, z ] = ∞∑ n=0 (a1, a2, . . . , ar+1; q)n (q, b1, b2, . . . , br; q)n zn, r+1Wr(a1; a4, a5, . . . , ar+1; q, z) = r+1φr [ a1, qa 1/2 1 ,−qa1/2 1 , a4, . . . , ar+1 a 1/2 1 ,−a1/2 1 , qa1/a4, . . . , qa1/ar+1 ; q, z ] . We call the r+1Wr series very well-poised basic hypergeometric series. Moreover, we call a r+1Wr series very well-poised balanced when it satisfies the balancing condition (a4a5 · · · ar+1)z =( ±(a1q) 1 2 )r−3 . 2 Transformation formula I In this section, we give a transformation formula of basic hypergeometric series. We show that a very well-poised balanced 12W11 series is transformed to a 4φ3 series which is neither balanced nor well-poised. Recall the following proposition: Proposition 2.1 ([12, Proposition 7.3]). We have for r, θ ∈ Z≥0 r+9Wr+8 ( a; q−θ, qθaf, a1, . . . , ar, ( aq f ) 1 2 ,− ( aq f ) 1 2 , ( aq2 f ) 1 2 ,− ( aq2 f ) 1 2 ; q, z ) (2.1) = (aq, f2/q; q)θ (af, f ; q)θ ∑ m≥0 (q/f, q−θ, aq/f ; q)m (q, q−θq2/f2, aq; q)m qm r+5Wr+4 ( a; q−m, qmaq/f, a1, . . . , ar; q, z ) . The main result in this section is as follows: 4 B. Feigin, A. Hoshino, M. Noumi, J. Shibahara and J. Shiraishi Theorem 2.2. Assume af = a2a3, then 12W11 ( a; q−θ, qθaf, f, a2, a3, ( aq f ) 1 2 ,− ( aq f ) 1 2 , ( aq2 f ) 1 2 ,− ( aq2 f ) 1 2 ; q, q/f ) = (aq, af/a2; q)θ (af, aq/a2; q)θ 4φ3 [ q−θ, q−θa2/a, f, a2 q−θ+1a2/af, q−θ+1/f, aq/a3 ; q, q2/f2 ] . (2.2) Remark 2.3. By one of the anonymous referees, it was pointed out that (2.2) is a special case of the transformation formula obtained by Langer, Schlosser and Warnaar [7, equation (4.2)]. Namely, we have (2.2) by letting d→ 0 (or d→∞) in the p = 0 case of [7, equation (4.2)]. The authors thank the referee for informing them of this fact. Remark 2.4. The 4φ3 series in the right hand side of (2.2) is neither balanced nor well-poised. However it has the following structure: set for simplicity u1 := q−θ, u2 := q−θa2/a, u3 := f , u4 := a2, v1 := q, v2 := q−θ+1a2/af , v3 := q−θ+1/f and v4 := aq/a3. Then we have (i) u1v1 = u3v3 = q−θ+1 and u2v4 = u4v2 = q−θ+1a2/a3, (ii) u1v4 = u4v3 = aq−θ+1/a3 and u2v1 = u3v2 = q−θ+1a2/a. Proof of Theorem 2.2. Applying (2.1) to the left hand side of (2.2), we have l.h.s. of (2.2) = (aq, f2/q; q)θ (af, f ; q)θ × ∑ m≥0 (q/f, q−θ, aq/f ; q)m (q, q−θ+2/f2, aq; q)m qm 8W7 ( a; q−m, aqm+1/f, f, a2, a3; q, q/f ) .(2.3) We apply Watson’s formula [3, p. 35, equation (2.5.1)] 8φ7 [ a, qa 1 2 ,−qa 1 2 , b, c, d, e, q−n a 1 2 ,−a 1 2 , aq/b, aq/c, aq/d, aq/e, aqn+1 ; q, a2q2+n bcde ] = (aq, aq/de; q)n (aq/d, aq/e; q)n 4φ3 [ q−n, d, e, aq/bc aq/b, aq/c, deq−n/a ; q, q ] , (2.4) to the right hand side of (2.3) with the substitutions b = aqm+1/f , c = a3, d = a2 and e = f . Then we have r.h.s. of (2.3) = (aq, f2/q; q)θ (af, f ; q)θ ∑ m≥0 (q−θ, aq/a2f, q/f ; q)m (q−θ+2/f2, aq/a2, q; q)m qm × m∑ j=0 (f, a2, q −mf/a3, q −m; q)j (aq/a3, q−ma2f/a, q−mf, q; q)j qj . (2.5) Now we need to change the order of the summation. Setting s := m− j and using the condition af = a2a3, we have r.h.s. of (2.5) = (aq, f2/q; q)θ (af, f ; q)θ θ∑ j=0 (q−θ, f, a2; q)j (q−θ+2/f2, aq/a3, q; q)j (q/f)2j × θ−j∑ s=0 (aq/a2f, q/f, q −θ+j ; q)s (aq/a2, q, q−θ+j+2/f2; q)s qs. (2.6) Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn 5 As a final step, we apply the q-Saalschütz transformation formula [3, p. 13, equation (1.7.2)] to the summation with respect to s of (2.6). Then we have r.h.s. of (2.6) = (aq, q; q)θ (af, f ; q)θ θ∑ j=0 (af/a2, f ; q)θ−j (aq/a2, q; q)θ−j (f, a2; q)j (q, aq/a3; q)j = (aq, af/a2; q)θ (af, aq/a2; q)θ 4φ3 [ q−θ, q−θa2/a, f, a2 q−θ+1a2/af, q−θ+1/f, aq/a3 ; q, q2/f2 ] . This completes the proof of Theorem 2.2. � In what follows, we use Theorem 2.2 in the form 12W11 ( a; q−θ, qθaf, f, a2, a3, ( aq f ) 1 2 ,− ( aq f ) 1 2 , ( aq2 f ) 1 2 ,− ( aq2 f ) 1 2 ; q, q/f ) = (aq, q; q)θ (af, f ; q)θ θ∑ j=0 (af/a2, f ; q)θ−j (aq/a2, q; q)θ−j (f, a2; q)j (q, aq/a3; q)j . (2.7) 3 Transformation formula II In this section, we present a transformation formula which will be used to describe the Macdonald polynomials of types Dn and Cn. Theorem 3.1. Let n ∈ Z≥2. Fix K,m1,m2, . . . ,mn ∈ Z≥0 arbitrarily. Set ml,n := n∑ k=l mk, φl,n := n∑ k=l φk for simplicity of display. We have ∑ φ1,φ2,...,φn−1,i≥0 φ1+φ2+···+φn−1+i=K ( ∏ 1≤l≤n−1 (t; q)φl(t; q)φl+ml (q; q)φl(q; q)φl+ml × (tn−l−1qφl+2φl+1,n−1+ml,n+1; q)φl(t n−lq2φl+1,n−1+ml+1,n ; q)φl (tn−lqφl+2φl+1,n−1+ml,n ; q)φl(t n−l−1q2φl+1,n−1+ml+1,n+1; q)φl ) × (t; q)mn (q; q)mn (t; q)i(t nq2K+m1,n−2i; q)i (q; q)i(tn−1q2K+m1,n−2i+1; q)i = ∑ φ1,φ2,...,φn−1,φn≥0 φ1+φ2+···+φn=K ∏ 1≤j≤n (t; q)φj (t; q)φj+mj (q; q)φj (q; q)φj+mj . (3.1) We prove Theorem 3.1 by induction on n. In order to clarify the structure of our proof, we first confirm the case n = 2 in Section 3.1, and then treat the general case in Section 3.2. 3.1 The case n = 2 Proposition 3.2. Fix K,m1,m2 ∈ Z≥0 arbitrarily. We have∑ φ1,i≥0 φ1+i=K (t; q)m1+φ1(t; q)m2(t, qm1+m2+φ1+1, tqm2 ; q)φ1(t, t2q2K+m1+m2−2i; q)i (q; q)m1+φ1(q; q)m2(q, tqm1+m2+φ1 , qm2+1; q)φ1(q, tq2K+m1+m2−2i+1; q)i = ∑ φ1,φ2≥0 φ1+φ2=K (t; q)m1+φ1(t; q)m2+φ2(t; q)φ1(t; q)φ2 (q; q)m1+φ1(q; q)m2+φ2(q; q)φ1(q; q)φ2 . (3.2) 6 B. Feigin, A. Hoshino, M. Noumi, J. Shibahara and J. Shiraishi Proof. One finds that the summation in l.h.s. of (3.2) with respect to φ1 is given by the following 12W11 series l.h.s. of (3.2) = (t, t2qm1+m2 ; q)K(t; q)m1(t; q)m2 (q, tqm1+m2+1; q)K(q; q)m1(q; q)m2 × 12W11 ( a; q−K , qKaf, f, b, c, ( aq f ) 1 2 ,− ( aq f ) 1 2 , ( aq2 f ) 1 2 ,− ( aq2 f ) 1 2 ; q, q/f ) , (3.3) where a = tqm1+m2 , b = tqm1 , c = tqm2 , f = t. Then applying formula (2.7), the r.h.s. of (3.3) is rewritten as (t; q)m1(t; q)m2 (q; q)m1(q; q)m2 K∑ φ1=0 (tqm2 , t; q)K−φ1 (qm2+1, q; q)K−φ1 (t, tqm1 ; q)φ1 (q, qm1+1; q)φ1 = K∑ φ1=0 (t; q)m1+φ1(t; q)m2+K−φ1(t; q)φ1(t; q)K−φ1 (q; q)m1+φ1(q; q)m2+K−φ1(q; q)φ1(q; q)K−φ1 . This completes the proof of Proposition 3.2. � 3.2 The general case Assume the validity of the transformation formula (3.1) for n− 1. We have l.h.s. of (3.1) = K∑ φn−1=0 K−φn−1∑ φn−2=0 · · · K−φ3,n−1∑ φ2=0 ∏ 2≤l≤n−1 (t; q)φl(t; q)φl+ml (q; q)φl(q; q)φl+ml × (tn−l−1qφl+2φl+1,n−1+ml,n+1; q)φl(t n−lq2φl+1,n−1+ml+1,n ; q)φl (tn−lqφl+2φl+1,n−1+ml,n ; q)φl(t n−l−1q2φl+1,n−1+ml+1,n+1; q)φl × K−φ2,n−1∑ φ1=0 (t; q)φ1(t; q)φ1+m1(t; q)mn(t, tnq2φ1,n−1+m1,n ; q)K−φ1,n−1 (q; q)φ1(q; q)φ1+m1(q; q)mn(q, tn−1q2φ1,n−1+m1,n+1; q)K−φ1,n−1 × (tn−2qφ1+2φ2,n−1+m1,n+1; q)φ1(tn−1q2φ2,n−1+m2,n ; q)φ1 (tn−1qφ1+2φ2,n−1+m1,n ; q)φ1(tn−2q2φ2,n−1+m2,n+1; q)φ1 . (3.4) The summation with respect to φ1 in (3.4) can be written as follows (t; q)m1(t; q)mn(t, tnq2φ2,n−1+m1,n ; q)K−φ2,n−1 (q; q)m1(q; q)mn(q, tn−1q2φ2,n−1+m1,n+1; q)K−φ2,n−1 × 12W11 ( a; q−θ, qθaf, f, b, c, ( aq f ) 1 2 ,− ( aq f ) 1 2 , ( aq2 f ) 1 2 ,− ( aq2 f ) 1 2 ; q, q/f ) , (3.5) where a = tn−1q2φ2,n−1+m1,n , b = tqm1 , c = tn−1q2φ2,n−1+m2,n , f = t, θ = K − φ2,n−1. Applying the formula (2.7), (3.5) is transformed into (t; q)m1(t; q)mn (q; q)m1(q; q)mn × K−φ2,n−1∑ j=0 (tn−1q2φ2,n−1+m2,n ; q)K−j−φ2,n−1(t; q)K−j−φ2,n−1(t; q)j(tq m1 ; q)j (tn−2q2φ2,n−1+m2,n+1; q)K−j−φ2,n−1(q; q)K−j−φ2,n−1(q; q)j(qm1+1; q)j . (3.6) Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn 7 Using (3.6) and changing the order of the summations, we can express the r.h.s. of (3.4) as follows K∑ j=0 (t; q)j(t; q)j+m1 (q; q)j(q; q)j+m1 K−j∑ φn−1=0 K−j−φn−1∑ φn−2=0 · · · K−j−φ4,n−1∑ φ3=0 ∏ 3≤l≤n−1 (t; q)φl(t; q)φl+ml (q; q)φl(q; q)φl+ml × (tn−l−1qφl+2φl+1,n−1+ml,n+1; q)φl(t n−lq2φl+1,n−1+ml+1,n ; q)φl (tn−lqφl+2φl+1,n−1+φl,n ; q)φl(t n−l−1q2φl+1,n−1+ml+1,n+1; q)φl × K−j−φ3,n−1∑ φ2=0 (t; q)φ2+m2(t; q)mn(t; q)φ2(tn−1q2φ2,n−1+m2,n−1 ; q)K−j−φ2,n−1(t; q)K−j−φ2,n−1 (q; q)φ2+m2(q; q)mn(q; q)φ2(tn−2q2φ2,n−1+m2,n+1; q)K−j−φ2,n−1(q; q)K−j−φ2,n−1 × (tn−2q2φ3,n−1+m3,n ; q)φ2(tn−3qφ2+2φ3,n−1+m2,n+1; q)φ2 (tn−3q2φ3,n−1+m3,n+1; q)φ2(tn−2qφ2+2φ3,n−1+m2,n ; q)φ2 . (3.7) By the induction hypothesis, (3.7) can be rewritten as K∑ j=0 (t; q)j(t; q)j+m1 (q; q)j(q; q)j+m1 ∑ φ2+φ3+···+φn−1+φ=K−j (t; q)φ(t; q)φ+mn (q; q)φ(q; q)φ+mn ∏ 2≤l≤n−1 (t; q)φl(t; q)φl+ml (q; q)φl(q; q)φl+ml = ∑ j+φ2+φ3+···+φn−1+φ=K (t; q)j(t; q)j+m1 (q; q)j(q; q)j+m1 (t; q)φ(t; q)φ+mn (q; q)φ(q; q)φ+mn ∏ 2≤l≤n−1 (t; q)φl(t; q)φl+ml (q; q)φl(q; q)φl+ml = r.h.s. of (3.1). Hence we have completed the proof of Theorem 3.1. 4 Tableau formulas for Macdonald polynomials of type Dn In this section, we investigate the tableau formula for the one-row Macdonald polynomials of type Dn. Let I := {1, 2, . . . , n− 1, n, n, n− 1, . . . , 1} be the index set with the ordering 1 ≺ 2 ≺ · · · ≺ n− 1 ≺≺ n n ≺ ≺ n− 1 ≺ · · · ≺ 1. (4.1) Denoting by Λ1 the first fundamental weight of type Dn, let P (Dn) (r) (x; q, t) be the Macdonald polynomials of type Dn associated with the weights rΛ1 for r ∈ Z≥0. We recall Lassalle’s formula for P (Dn) (r) (x; q, t). Lassalle introduced Gr(x; q, t) defined by the generating function n∏ i=1 (tuxi; q)∞ (uxi; q)∞ (tu/xi; q)∞ (u/xi; q)∞ = ∑ r≥0 Gr(x; q, t)ur. (4.2) Comparing the coefficient of ur of the equation (4.2), we obtain Gr(x; q, t) = ∑ θ1+θ2+···+θ1=r ∏ i∈I (t; q)θi (q; q)θi x θ1−θ1 1 x θ2−θ2 2 · · ·xθn−θnn , (4.3) where θi, θi ∈ Z≥0, i = 1, 2, . . . , n. The following theorem [4, Theorem 5.2] was conjectured by Lassalle [8]. 8 B. Feigin, A. Hoshino, M. Noumi, J. Shibahara and J. Shiraishi Theorem 4.1 ([4, 8]). For any positive integer r we have Gr(x; q, t) = [r/2]∑ i=0 (t; q)r−2i (q; q)r−2i P (Dn) (r−2i)(x; q, t) (t; q)i(t nqr−2i; q)i (q; q)i(tn−1qr−2i+1; q)i . (4.4) Conversely P (Dn) (r) (x; q, t) = (q; q)r (t; q)r [r/2]∑ i=0 Gr−2i(x; q, t)ti (1/t; q)i(t nqr−i; q)i (q; q)i(tn−1qr−i; q)i 1− tnqr−2i 1− tnqr−i . (4.5) Remark 4.2. If we insert (4.3) in (4.5), we have an explicit combinatorial formula for P (Dn) (r) (x; q, t). However, it is not clear how we can extract the combinatorics of the Kashiwara– Nakashima tableaux of type D from this Lassalle’s version. Here, we establish the tableau formula for P (Dn) (r) (x; q, t). Theorem 4.3. We have P (Dn) (r) (x; q, t) = (q; q)r (t; q)r ∑ θ1+θ2+···+θ 1 =r θnθn=0 ∏ k∈I (t; q)θk (q; q)θk (4.6) × ∏ 1≤l≤n−1 (tn−lqθl+1+θl+2+···+θl+1 ; q)θl(t n−l−1qθl+θl+1+···+θl+1+1; q)θl (tn−l−1qθl+1+θl+2+···+θl+1+1; q)θl(t n−lqθl+θl+1+···+θl+1 ; q)θl x θ1−θ1 1 x θ2−θ2 2 · · ·xθn−θnn . Remark 4.4. Set X := tn−lqθl+1+θl+2+···+θl+1 and Y := tn−l−1qθl+1+θl+2+···+θl+1 for simplicity. The last product in (4.6) can be rewritten as ∏ 1≤l≤n−1 (X; q)θl(q θlY ; q)θl (Y ; q)θl(q θlX; q)θl = ∏ 1≤l≤n−1 (X; q)θl(X; q)θl(Y ; q)θl+θl (Y ; q)θl(Y ; q)θl(X; q)θl+θl . This implies that r.h.s. of (4.6) has the symmetry (Z/2Z)n. Namely, it is invariant under the exchange xl ↔ 1 xl , 1 ≤ l ≤ n− 1. Remark 4.5. It would be an intriguing problem to show the factorization of the Macdonald polynomial P (Dn) (r) (x; q, t) from our formula (4.6) when we make the principal specialization: P (Dn) (r) ( tn−1, . . . , t, 1; q, t ) = t−r(n−1) (tn; q)r(t 2(n−1); q)r (t; q)r(t(n−1); q)r . Remark 4.6. Setting n = 1 in (4.6), we have P (D1) (r) (x; q, t) = xr + x−r. Setting n = 2 in (4.6), we have P (D2) (r) (x; q, t) = (q; q)r (t; q)r ∑ θ1+θ2+θ2 +θ 1 =r θ2θ2 =0 (t; q)θ1 (q; q)θ1 (t; q)θ2 (q; q)θ2 (t; q)θ2 (q; q)θ2 (t; q)θ1 (q; q)θ1 × (tqθ2+θ2 ; q)θ1 (qqθ2+θ2 ; q)θ1 (qqθ1+θ2+θ2 ; q)θ1 (tqθ1+θ2+θ2 ; q)θ1 x θ1−θ1 1 x θ2−θ2 2 Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn 9 = ( (q; q)r (t; q)r ∑ µ1+µ2=r (t; q)µ1 (q; q)µ1 (t; q)µ2 (q; q)µ2 x (µ1−µ2)/2 1 x −(µ1−µ2)/2 2 ) × ( (q; q)r (t; q)r ∑ ν1+ν2=r (t; q)ν1 (q; q)ν1 (t; q)ν2 (q; q)ν2 x (ν1−ν2)/2 1 x (ν1−ν2)/2 2 ) , which shows the symmetry D2 = A1 ×A1. Proof of Theorem 4.3. Let { Ψ (Dn) (r) (x; q, t) } r∈Z≥0 be a certain collection of Laurent polyno- mials. By using Lassalle’s formula (4.4), it is easily proved by induction that the infinite system of equalities for Ψ (Dn) (r) (x; q, t) Gr(x; q, t) = [r/2]∑ i=0 (t; q)r−2i (q; q)r−2i Ψ (Dn) (r−2i)(x; q, t) (t; q)i(t nqr−2i; q)i (q; q)i(tn−1qr−2i+1; q)i , r ∈ Z≥0, (4.7) gives us Ψ (Dn) (r) (x; q, t) = P (Dn) (r) (x; q, t), r ∈ Z≥0. Set Ψ (Dn) (r) (x; q, t) = (q; q)r (t; q)r ∑ θ1+θ2+···+θ 1 =r θnθn=0 ∏ k∈I (t; q)θk (q; q)θk × ∏ 1≤l≤n−1 (tn−lqθl+1+θl+2+···+θl+1 ; q)θl(t n−l−1qθl+θl+1+···+θl+1+1; q)θl (tn−l−1qθl+1+θl+2+···+θl+1+1; q)θl(t n−lqθl+θl+1+···+θl+1 ; q)θl × xθ1−θ11 x θ2−θ2 2 · · ·xθn−θnn . We prove this family of Laurent polynomials satisfies (4.7). In view of the (Z/2Z)n symmetry of Ψ (Dn) (r) (x; q, t), it is sufficient to consider in (4.7) the coefficients of the monomials xm1 1 · · ·xmnn with nonnegative powers m1, . . . ,mn ∈ Z≥0 only. Let r ∈ Z≥0, and fix m1, . . . ,mn ∈ Z≥0 arbitrarily. Set K := 1 2(r −m1 −m2 − · · · −mn) for simplicity. Setting θk = mk + φk, θk = φk, 1 ≤ k ≤ n− 1, θn = mn, θn = 0, one finds that the coefficients of the monomials xm1 1 · · ·xmnn in (4.7) is exactly given by l.h.s. of (3.1). On the other hand, the coefficients of the monomials xm1 1 · · ·xmnn in Gr(x; q, t) is clearly r.h.s. of (3.1). Hence we have proved (4.7), which establishes the tableau formula P (Dn) (r) (x; q, t) = Ψ (Dn) (r) (x; q, t). � 5 Transformation formula III In this section, we present a transformation formula to describe the Macdonald polynomials of type Cn. Theorem 5.1. Let n ∈ Z≥2. Fix K,m1,m2, . . . ,mn ∈ Z≥0 arbitrarily. Set ml,n := n∑ k=l mk, φl,n := n∑ k=l φk for simplicity of display. We have ∑ φ1,φ2,...,φn,i≥0 φ1+φ2+···+φn+i=K ∏ 1≤k≤n (t; q)φk(t; q)φk+mk (q; q)φk(q; q)φk+mk · ( t2/q )i (t−1q; q)i(t nq2K+m1,n−2i; q)i (q; q)i(tn+1q2K+m1,n−2i; q)i 10 B. Feigin, A. Hoshino, M. Noumi, J. Shibahara and J. Shiraishi × ∏ 1≤l≤n (tn−l+1qφl+φl+1,n+ml,n ; q)φl(t n−l+2q2φl+1,n+ml+1,n−1; q)φl (tn−l+2qφl+φl+1,n+ml,n−1; q)φl(t n−l+1q2φl+1,n+ml+1,n ; q)φl = ∑ φ1,φ2,...,φn≥0 φ1+φ2+···+φn=K ∏ 1≤j≤n (t; q)φj (t; q)φj+mj (q; q)φj (q; q)φj+mj . (5.1) We prove Theorem 5.1 by induction on n. In Section 5.1 we show Theorem 5.1 in the case of n = 2 and in Section 5.2 we treat the general case. 5.1 The case n = 2 Setting n = 2, we have r.h.s. of (5.1) = K∑ φ1=0 (t; q)m1+φ1(t; q)φ1(t; q)m2+K−φ1(t; q)K−φ1 (q; q)m1+φ1(q; q)φ1(q; q)m2+K−φ1(q; q)K−φ1 = K∑ φ1=0 (t; q)m1(t; q)m2(tqm1 ; q)φ1(t; q)φ1(tqm2 ; q)K−φ1(t; q)K−φ1 (q; q)m1(q; q)m2(qm1+1; q)φ1(q; q)φ1(qm2+1; q)K−φ1(q; q)K−φ1 . Then we have l.h.s. of (5.1) = K∑ φ2=0 K−φ2∑ φ1=0 (t; q)φ2(t; q)φ2+m2(t; q)φ1(t; q)φ1+m1 (q; q)φ2(q; q)φ2+m2(q; q)φ1(q; q)φ1+m1 × (t2qm1+m2+2φ2+φ1 ; q)φ1(t3qm2+2φ2−1; q)φ1 (t3qm1+m2+2φ2+φ1−1; q)φ1(t2qm2+2φ2 ; q)φ1 × (tqm2+φ2 ; q)φ2(t2q−1; q)φ2 (t2qm2−1+φ2 ; q)φ2(t; q)φ2 (t2/q)K−φ2−φ1 × (q/t; q)K−φ2−φ1(t2qm1+m2+2φ2+2φ1 ; q)K−φ2−φ1 (q; q)K−φ2−φ1(t3qm1+m2+2φ2+2φ1 ; q)K−φ2−φ1 = K∑ φ2=0 (t; q)m2+φ2(t; q)φ2(tqm2+φ2 ; q)φ2(t2q−1; q)φ2(q/t; q)K−φ2(t2qm1+m2+2φ2 ; q)K−φ2 (q; q)m2+φ2(q; q)φ2(tqm2−1+φ2 ; q)φ2(t; q)φ2(q; q)K−φ2(t3qm1+m2+2φ2 ; q)K−φ2 × 8φ7 [ a, qa 1 2 ,−qa 1 2 , b, c, d, e, qφ2−K a 1 2 ,−a 1 2 , aq/b, aq/c, aq/d, aq/e, aqK−φ2+1 ; q, a2qK−φ2+2 bcde ] , (5.2) where a = t3qm1+m2−1+φ2 , b = tqm1 , c = t2qK+m1+m2+φ2 , d = t, e = t3qm2−1+2φ2 , a2qK−φ2+2 bcde = q/t. Applying Watson’s transformation formula (2.4) to the 8φ7 series of (5.2), we have 8φ7 series of (5.2) = (t3qm1+m2+2φ2 , t−1qm1+1; q)K−φ2 (t2qm1+m2+2φ2 , qm1+1; q)K−φ2 × 4φ3 [ qφ2−K−m2 , t, t3qm2−1+2φ2 , qφ2−K t2qm2+2φ2 , tqφ2−K , tqφ2−K−m1 ; q, q ] . (5.3) Using Sears’ transformation formulas [3, p. 242, Appendix III, equations (III.15) and (III.16)], we rewrite the 4φ3 series in (5.3) as follows 4φ3 [ qφ2−K−m2 , t, t3qm2−1+2φ2 , qφ2−K t2qm2+2φ2 , tqφ2−K , tqφ2−K−m1 ; q, q ] = (qm1−K+φ2 , t−1q1−m2−K−φ2 ; q)K−φ2 (tq−m1−K−φ2 , t2q1−m2−K−φ2 ; q)K−φ2 Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn 11 × 4φ3 [ tqm1 , t, t−2q1−m2−K−φ2 , qφ2−K tqφ2−K , t−1q1−m2−K−φ2 , qm1+1; q, q ] . (5.4) Sears’ transformation gives us 4φ3 series in (5.4) = (t−2q1−m2−K−φ2 , q; q)K−φ2 (t−1q1−m2−K−φ2 , t−1q; q)K−φ2 × 4φ3 [ t, t2qm1+m2+k+φ2 , t−1q, qφ2−K qm1+1, q, t2qm2 ; q, q ] , (5.5) and 4φ3 series in (5.5) = (t−1q, tqm2+2φ2 ; q)K−φ2 (q, t2qm2+2φ2 ; q)K−φ2 tK−φ2 × 4φ3 [ t, t−2q1−m2−K−φ2 , tqm1 , qφ2−K qm1+1, tqφ2−K , t−1q1−m2−K−φ2 ; q, q ] . Then we have l.h.s. of (5.2) = K∑ φ2=0 (t; q)m1(t)m2(t2qm2+φ2 ; q)φ2(t2q−1; q)φ2(t−1q; q)K−φ2(tqm2+2φ2 ; q)K−φ2 (q; q)m1(q; q)m2(q; q)φ2(qm2+1; q)φ2(t2qm2−1+φ2 ; q)φ2(q; q)K−φ2(t2qm2+2φ2 ; q)K−φ2 × 4φ3 [ t, t−2q1−m2−K−φ2 , tqm1 , qφ2−K qm1+1, tqφ2−K , t−1q1−m2−K−φ2 ; q, q ] = K∑ φ1=0 (t; q)m1(t; q)m2(t−1q; q)K(tqm2 ; q)K(q−K , t−2q1−m2−K , t, tqm1 ; q)φ1 (q; q)m1(q; q)m2(q; q)K(t2qm2 ; q)K(tq−K , t−1q1−m2−K , q, qm1+1; q)φ1 × K−φ1∑ φ2=0 (t2qm2−1, tq m2+1 2 ,−tq m2+1 2 , t2q−1, tqm2+K−φ1 , qφ1−K ; q)φ2 (q, tq m2−1 2 ,−tq m2−1 2 , qm2+1, tqφ1−K , t2qm2+K−φ1 ; q)φ2 (t2/q)K(q/t)φ2qφ1 = K∑ φ1=0 (t; q)m1(t; q)m2(t−1q; q)K(tqm2 ; q)K(q−K , t−2q1−m2−K , t, tqm1 ; q)φ1 (q; q)m1(q; q)m2(q; q)K(t2qm2 ; q)K(tq−K , t−1q1−m2−K , q, qm1+1; q)φ1 (t2/q)Kqφ1 × 6φ5 [ t2qm2−1, tq m2+1 2 ,−tq m2+1 2 , t2q−1, tqm2+K−φ1 , qφ1−K q, tq m2−1 2 ,−tq m2−1 2 , qm2+1, tqφ1−K , t2qm2+K−φ1 ; q, q/t ] = k∑ φ1=0 (t; q)m1(t; q)m2(t−1q; q)K(tqm2 ; q)K(q−K , t−2q1−m2−K , t, tqm1 ; q)φ1 (q; q)m1(q; q)m2(q; q)K(t2qm2 ; q)K(tq−K , t−1q1−m2−K , q, qm1+1; q)φ1 × (t2qm2 ; q)K−φ1(t−1q1−K+φ1 ; q)K−φ1 (qm2+1; q)K−φ1(tqφ1−K ; q)K−φ1 (t2/q)Kqφ1 = r.h.s. of (5.1). 5.2 The general case We have l.h.s. of (5.1) = K∑ φ2,n=0 ∏ 2≤k≤n (t; q)φk(t; q)φk+mk (q; q)φk(q; q)φk+mk × ∏ 2≤l≤n (tn−l+1qφl+φl+1,n+ml,n ; q)φl(t n−l+2q2φl+1,n+ml+1,n−1; q)φl (tn−l+2qφl+φl+1,n+ml,n−1; q)φl(t n−l+1q2φl+1,n+ml+1,n ; q)φl 12 B. Feigin, A. Hoshino, M. Noumi, J. Shibahara and J. Shiraishi × K−φ2,n∑ φ1=0 (tnqφ1+φ2,n+m1,n ; q)φ1(tn+1q2φ2,n+m2,n−1; q)φ1 (tn+1qφ1+φ2,n+m1,n−1; q)φ1(tnq2φ2,n+m2,n ; q)φ1 × (t2/q)K−φ2,n−φ1 (t−1q; q)K−φ2,n−φ1(tnq2φ2,n+m1,n+2φ1 ; q)K−φ2,n−φ1 (q; q)K−φ2,n−φ1(tn+1q2φ2,n+m1,n+2φ1 ; q)K−φ2,n−φ1 . (5.6) Here, we can describe the summation with respect to φ1 in (5.6) as follows: (t; q)m1(tnqm1,n+2φ2,n , t−1q; q)K−φ2,n (q; q)m1(tn+1qm1,n+2φ2,n , q; q)K−φ2,n (t2/q)K−φ2,n × 8φ7 [ tn+1qm1,n+2φ2,n−1, t n+1 2 q m1,n+2φ2,n+1 2 , t n+1 2 q m1,n+2φ2,n−1 2 ,−t n+1 2 q m1,n+2φ2,n−1 2 , −t n+1 2 q m1,n+2φ2,n+1 2 , t, tqm1 , tn+1qm2,n+2φ2,n−1, tnqm1,n+2φ2,n+K , qφ2,n−K tnqm1,n+2φ2,n , tnqm2,n+2φ2,n , qm1+1, tqφ2,n−K , tn+1qm1,n+2φ2,n+K ; q, q/t ] = (t; q)m1(tnqm1,n+2φ2,n , t−1q, t−nq1−K−m2,n−φ2,n ; q)K−φ2,n (q; q)m1(qm1+1, q, tqφ2,n−K ; q)K−φ2,n (t2/q)K−φ2,n × 4φ3 [ tn−1qm2,n+2φ2,n , tn+1qm2,n+2φ2,n−1, tnqm1,n+φ2,n+K , qφ2,n−K tnqm1,n+2φ2,n , tnqm2,n+2φ2,n , tnqm2,n+2φ2,n ; q, q ] . (5.7) Applying Sears’ 4φ3 transformation formula [3, p. 41, equation (2.10.4)] to the r.h.s. of (5.7), we have r.h.s. of (5.7) = (t2/q)K−φ2,n (t; q)m1(t−1q; q)K−φ2,n(tn−1qm2,n+2φ2,n ; q)K−φ2,n (q; q)m1(q; q)K−φ2,n(tnqm2,n+2φ2,n ; q)K−φ2,n × 4φ3 [ tqm1 , t, t−nq1−K−m2,n−φ2,n , qφ2,n−K qm1+1, tqφ2,n−K , t−n+1q1−K−m2,n−φ2,n ; q, q ] . (5.8) Using the following two formulas (t−1q; q)K−φ2,n(qφ2,n−K ; q)φ1 (q; q)K−φ2,n(tqφ2,n−K ; q)φ1 = (t−1q; q)K−φ2,n−φ1 (q; q)K−φ2,n−φ1 t−φ1 , (tn−1qm2,n+2φ2,n ; q)K−φ2,n(t−nq1−K−m2,n−φ2,n ; q)φ1 (tnqm2,n+2φ2,n ; q)K−φ2,n(t−n+1q1−K−m2,n−φ2,n ; q)φ1 = (tn−1qm2,n+2φ2,n ; q)K−φ2,n−φ1 (tnqm2,n+2φ2,n ; q)K−φ2,n−φ1 t−φ1 , we have r.h.s. of (5.8) = K−φ2,n∑ φ1=0 (t; q)m1(t; q)φ1(tqm1 ; q)φ1(t−1q; q)K−φ2,n−φ1(tn−1qm2,n+2φ2,n ; q)K−φ2,n−φ1 (q; q)m1(q; q)φ1(qm1+1; q)φ1(q; q)K−φ2,n−φ1(tnqm2,n+2φ2,n ; q)K−φ2,n−φ1 × (t2/q)K−φ2,n−φ1 . Then we have l.h.s. of (5.6) = K∑ φ2,n=0 ∏ 2≤k≤n (t; q)φk(t; q)φk+mk (q; q)φk(q; q)φk+mk × ∏ 2≤l≤n (tn−l+1qφl+φl+1,n+ml,n ; q)φl(t n−l+2q2φl+1,n+ml+1,n−1; q)φl (tn−l+2qφl+φl+1,n+ml,n−1; q)φl(t n−l+1q2φl+1,n+ml+1,n ; q)φl Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn 13 × K−φ2,n∑ φ1=0 (t; q)m1(t; q)φ1(tqm1 ; q)φ1(t−1q; q)K−φ2,n−φ1(tn−1qm2,n+2φ2,n ; q)K−φ2,n−φ1 (q; q)m1(q; q)φ1(qm1+1; q)φ1(q; q)K−φ2,n−φ1(tnqm2,n+2φ2,n ; q)K−φ2,n−φ1 × (t2/q)K−φ2,n−φ1 = K∑ φ1=0 (t; q)φ1(t; q)φ1+m1 (q; q)φ1(q; q)φ1+m1 K−φ1∑ φ2,n=0 ∏ 2≤k≤n (t; q)φk(t; q)φk+mk (q; q)φk(q; q)φk+mk × ∏ 2≤l≤n (tn−l+1qφl+φl+1,n+ml,n ; q)φl(t n−l+2q2φl+1,n+ml+1,n−1; q)φl (tn−l+2qφl+φl+1,n+ml,n−1; q)φl(t n−l+1q2φl+1,n+ml+1,n ; q)φl × (t−1q; q)K−φ1−φ2,n(tn−1qm2,n+2φ2,n ; q)K−φ1−φ2,n (q; q)K−φ1−φ2,n(tnqm2,n+2φ2,n ; q)K−φ1−φ2,n (t2/q)K−φ1−φ2,n = K∑ φ1=0 (t; q)φ1(t; q)φ1+m1 (q; q)φ1(q; q)φ1+m1 ∑ φ2+···+φn+i=K−φ1 ∏ 2≤k≤n (t; q)φk(t; q)φk+mk (q; q)φk(q; q)φk+mk × (t−1q; q)i(t n−1qm2,n+2φ2,n ; q)i (q; q)i(tnqm2,n+2φ2,n ; q)i (t2/q)i × ∏ 2≤l≤n (tn−l+1qφl+φl+1,n+ml,n ; q)φl(t n−l+2q2φl+1,n+ml+1,n−1; q)φl (tn−l+2qφl+φl+1,n+ml,n−1; q)φl(t n−l+1q2φl+1,n+ml+1,n ; q)φl . (5.9) By the induction hypothesis, we obtain r.h.s. of (5.9) = K∑ φ1=0 (t; q)φ1(t; q)φ1+m1 (q; q)φ1(q; q)φ1+m1 ∑ φ2+···+φn=K−φ1 ∏ 2≤k≤n (t; q)φk(t; q)φk+mk (q; q)φk(q; q)φk+mk = ∑ φ1+φ2+···+φn=K ∏ 1≤j≤n (t; q)φj (t; q)φj+mj (q; q)φj (q; q)φj+mj = r.h.s. of (5.1). 6 Tableau formulas for Macdonald polynomials of type Cn In this section, we establish the tableau formulas for the Macdonald polynomials of type Cn. Let I := {1, 2, . . . , n− 1, n, n, n− 1, . . . , 1} be the index set with the ordering 1 ≺ 2 ≺ · · · ≺ n− 1 ≺ n ≺ n ≺ n− 1 ≺ · · · ≺ 1. (6.1) Denoting by Λ1 the first fundamental weight of type Cn, let P (Cn) (r) (x; q, t, T ) be the Macdonald polynomials of type Cn associated with the weights rΛ1 for r ∈ Z≥0. The following theorem [4, Theorem 5.1] was conjectured by Lassalle [8]. Theorem 6.1 ([4, 8]). For any positive integer r we have Gr(x; q, t) = [r/2]∑ i=0 (t; q)r−2i (q; q)r−2i P (Cn) (r−2i)(x; q, t, T )T i (t/T ; q)i(t nqr−2i; q)i (q; q)i(Ttn−1qr−2i+1; q)i . (6.2) Conversely P (Cn) (r) (x; q, t, T ) = (q; q)r (t; q)r [r/2]∑ i=0 Gr−2i(x; q, t)ti (T/t; q)i(t nqr−i; q)i (q; q)i(Ttn−1qr−i; q)i 1− tnqr−2i 1− tnqr−i . First we prove the tableau formula for P (Cn) (r) (x; q, t, t2/q). 14 B. Feigin, A. Hoshino, M. Noumi, J. Shibahara and J. Shiraishi Theorem 6.2. We have P (Cn) (r) ( x; q, t, t2/q ) = (q; q)r (t; q)r ∑ θ1+θ2+···+θ1=r ∏ k∈I (t; q)θk (q; q)θk (6.3) × ∏ 1≤l≤n (tn−l+1qθl+···+θl+1 ; q)θl(t n−l+2qθl+1+···+θl+1−1; q)θl (tn−l+2qθl+···+θl+1−1; q)θl(t n−l+1qθl+1+···+θl+1 ; q)θl x θ1−θ1 1 x θ2−θ2 2 · · ·xθn−θnn . Remark 6.3. It would be an intriguing problem to show the factorization of the Macdonald polynomial P (Cn) (r) (x; q, t, t2/q) from our formula (6.3) when we make the principal specialization P (Cn) (r) (( t2/q )1/2 tn−1, . . . , ( t2/q )1/2 t, ( t2/q )1/2 ; q, t, t2/q ) = qr/2t−rn (tn; q)r(t 2(n+1)/q2; q)r (t; q)r(tn+1/q; q)r . Remark 6.4. Setting n = 1 in (6.3) we have, P (C1) (r) ( x; q, t, t2/q ) = r∑ θ1=0 (t2/q, q−r; q)θ1 (q, t−2q2−r; q)θ1 (q/t)2θ1x−r+2θ1 = x−r 2φ1 [ t2/q, q−r t−2q2−r ; q, (qx/t)2 ] . Setting n = 2 in (6.3) we have P (C2) (r) ( x; q, t, t2/q ) = (q; q)r (t; q)r ∑ θ1+θ2+θ2+θ1=r (t; q)θ1(t; q)θ1(t; q)θ2(t; q)θ2 (q; q)θ1(q; q)θ1(q; q)θ2(q; q)θ2 × (t2qθ1+θ2+θ2 , t3qθ2+θ2−1; q)θ1 (t3qθ1+θ2+θ2−1, t2qθ2+θ2 ; q)θ1 (tqθ2 , t2/q; q)θ2 (t2qθ2−1, t; q)θ2 x θ1−θ1 1 x θ2−θ2 2 . Proof of Theorem 6.2. Let { Ψ (Cn) (r) (x; q, t, T ) } r∈Z≥0 be a certain collection of Laurent poly- nomials. By using Lassalle’s formula (6.2), it is proved by induction that the infinite system of equalities for Ψ (Cn) (r) (x; q, t, T ) Gr(x; q, t) = [r/2]∑ i=0 (t; q)r−2i (q; q)r−2i Ψ (Cn) (r−2i)(x; q, t, T )T i (t/T ; q)i(t nqr−2i; q)i (q; q)i(Ttn−1qr−2i+1; q)i (6.4) gives us Ψ (Cn) (r) (x; q, t, T ) = P (Cn) (r) (x; q, t, T ), r ∈ Z≥0. We use this argument with the specializa- tion of the parameter T = t2/q. Set Ψ (Cn) (r) ( x; q, t, t2/q ) = (q; q)r (t; q)r ∑ θ1+θ2+···+θ1=r ∏ k∈I (t; q)θk (q; q)θk × ∏ 1≤l≤n (tn−l+1qθl+···+θl+1 ; q)θl(t n−l+2qθl+1+···+θl+1−1; q)θl (tn−l+2qθl+···+θl+1−1; q)θl(t n−l+1qθl+1+···+θl+1 ; q)θl x θ1−θ1 1 x θ2−θ2 2 · · ·xθn−θnn . We prove this family of Laurent polynomials satisfies (6.4) with the specialization T = t2/q. In view of the (Z/2Z)n symmetry of Ψ (Cn) (r) (x; q, t, t2/q), it is sufficient to consider in (6.4) the coefficients of the monomials xm1 1 · · ·xmnn with nonnegative powers m1, . . . ,mn ∈ Z≥0 only. Let r ∈ Z≥0, and fix m1, . . . ,mn ∈ Z≥0 arbitrarily. Set K := 1 2(r−m1−m2−· · ·−mn) for simplicity. Setting θk = mk + φk, θk = φk, 1 ≤ k ≤ n, Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn 15 one finds that the coefficients of the monomials xm1 1 · · ·xmnn in (6.4) is exactly given by l.h.s. of (5.1). On the other hand, the coefficients of the monomials xm1 1 · · ·xmnn in Gr(x; q, t) is r.h.s. of (5.1). Hence we have proved (6.4) with T = t2/q, which establishes the tableau formula P (Cn) (r) (x; q, t, t2/q) = Ψ (Cn) (r) (x; q, t, t2/q). � Finally, we present a tableau formula for the one-row Macdonald polynomials P (Cn) (r) (x; q, t, T ) with general parameters (q, t, T ). Theorem 6.5. Set θ := min(θn, θn). We have P (Cn) (r) (x; q, t, T ) = (q; q)r (t; q)r ∑ θ1+θ2+···+θ1=r ∏ k∈I\{n,n} (t; q)θk (q; q)θk (t; q)|θn−θn| (q; q)|θn−θn| × ∏ 1≤l≤n−1 ( (tn−l−1qθl+···+θn−1+|θn−θn|+θn−1+···+θl+1+1; q)θl (tn−lqθl+···+θn−1+|θn−θn|+θn−1+···+θl+1 ; q)θl × (tn−lqθl+1+···θn−1+|θn−θn|+θn−1+···+θl+1 ; q)θl (tn−l−1qθl+1+···+θn−1+|θn−θn|+θn−1+···+θl+1+1; q)θl ) × (T ; q)θ(t nqr−2θ; q)2θ (q; q)θ(Ttn−1qr−θ; q)θ(tn−1qr−2θ+1; q)θ x θ1−θ1 1 x θ2−θ2 2 · · ·xθn−θnn . (6.5) Remark 6.6. It would be an intriguing problem to show the factorization of the Macdonald polynomial P (Cn) (r) (x; q, t, T ) from our formula (6.5) when we make the principal specialization: P (Cn) (r) ( T 1/2tn−1, . . . , T 1/2t, T 1/2; q, t, T ) = T−r/2t−r(n−1) (tn; q)r(t 2(n−1)T ; q)r (t; q)r(tnT ; q)r . Proof of Theorem 6.5. We prove that the system of equalities (6.4) is satisfied by the fol- lowing Laurent polynomials Ψ (Cn) (r) (x; q, t, T ) = (q; q)r (t; q)r ∑ θ1+θ2+···+θ1=r ∏ k∈I\{n,n} (t; q)θk (q; q)θk (t; q)|θn−θn| (q; q)|θn−θn| × ∏ 1≤l≤n−1 ( (tn−l−1qθl+···+θn−1+|θn−θn|+θn−1+···+θl+1+1; q)θl (tn−lqθl+···+θn−1+|θn−θn|+θn−1+···+θl+1 ; q)θl × (tn−lqθl+1+···θn−1+|θn−θn|+θn−1+···+θl+1 ; q)θl (tn−l−1qθl+1+···+θn−1+|θn−θn|+θn−1+···+θl+1+1; q)θl ) × (T ; q)θ(t nqr−2θ; q)2θ (q; q)θ(Ttn−1qr−θ; q)θ(tn−1qr−2θ+1; q)θ x θ1−θ1 1 x θ2−θ2 2 · · ·xθn−θnn . Note that these Ψ (Cn) (r) (x; q, t, T ) have the (Z/2Z)n symmetry. Let r ∈ Z≥0, and fix m1, . . . ,mn ∈ Z≥0 arbitrarily. We study the coefficient of the monomial xm1 1 xm2 2 · · ·xmnn in r.h.s. of (6.4), namely we consider the case θk − θk = mk ≥ 0 (1 ≤ k ≤ n). Set K := 1 2(r − m1 − m2 − · · · − mn), θl,m := m∑ k=l θk, Ǐ := I\{n, n} for simplicity. Then the coefficient of the monomial xm1 1 xm2 2 · · ·xmnn in r.h.s. of (6.4) is expressed as follows ∑ θ1+θ2+···+θ1+2i=r ∏ k∈Ǐ (t; q)θk (q; q)θk (t; q)mn (q; q)mn 16 B. Feigin, A. Hoshino, M. Noumi, J. Shibahara and J. Shiraishi × ∏ 1≤l≤n−1 (tn−l−1qθl+2θl,n−1+ml,n+1; q)θl(t n−lq2θl+1,n−1+ml+1,n ; q)θl (tn−lqθl+2θl+1,n−1+ml,n ; q)θl(t n−l−1q2θl+1,n−1+ml+1,n+1; q)θl × (T ; q)θ(t nqr−2θ; q)2θ (q; q)θ(Ttn−1qr−θ; q)θ(tn−1qr−2θ+1; q)θ (t/T ; q)i(t nqr−2i; q)i (q; q)i(Ttn−1qr−2i+1; q)i T i = K∑ θ1,n−1=0 K−θ1,n−1∑ θn=0 ∏ k∈Ǐ (t; q)θk (q; q)θk (t; q)mn (q; q)mn × ∏ 1≤l≤n−1 (tn−l−1qθl+2θl,n−1+ml,n+1; q)θl(t n−lq2θl+1,n−1+ml+1,n ; q)θl (tn−lqθl+2θl+1,n−1+ml,n ; q)θl(t n−l−1q2θl+1,n−1+ml+1,n+1; q)θl × (T ; q)θn(tnq2θ1,n−1+m1,n ; q)2θn (q; q)θn(Ttn−1q2θ1,n−1+m1,n+θn ; q)θn(tn−1q2θ1,n−1+m1,n+1; q)θn × (t/T ; q)K−θ1,n−1−θn(tnq2θ1,n−1+m1,n+2θn ; q)K−θ1,n−1−θn (q; q)K−θ1,n−1−θn(Ttn−1q2θ1,n−1+m1,n+2θn+1; q)K−θ1,n−1−θn TK−θ1,n−1−θn = K∑ θ1,n−1=0 ∏ k∈Ǐ (t; q)θk (q; q)θk (t; q)mn (q; q)mn × ∏ 1≤l≤n−1 (tn−l−1qθl+2θl,n−1+ml,n+1; q)θl(t n−lq2θl+1,n−1+ml+1,n ; q)θl (tn−lqθl+2θl+1,n−1+ml,n ; q)θl(t n−l−1q2θl+1,n−1+ml+1,n+1; q)θl × (t/T ; q)K−θ1,n−1(tnq2θ1,n−1+m1,n ; q)K−θ1,n−1 (q; q)K−θ1,n−1(Ttn−1q2θ1,n−1+m1,n+1; q)K−θ1,n−1 TK−θ1,n−1 × 6W5 ( Ttn−1q2θ1,n−1+m1,n , T, tnqθ1,n−1+m1,n+K , q−K+θ1,n−1 ; q, q/t ) . (6.6) By the summation formula for 6φ5 series [3, p. 34, equation (2.4.2)], we have 6W5 series in (6.6) = (Ttn−1q2θ1,n−1+m1,n+1; q)K−θ1,n−1(t−1q−K+θ1,n+1; q)K−θ1,n−1 (tn−1q2θ1,n−1+m1,n+1; q)K−θ1,n−1(Tt−1q−K+θ1,n−1−1; q)K−θ1,n−1 . Note that the dependence on the parameter T in (6.6) disappears by the cancelation as (t/T ; q)K−θ1,n−1(t−1q−K+θ1,n−1+1; q)K−θ1,n−1 (Tt−1q−K+θ1,n−1−1; q)K−θ1,n−1 TK−θ1,n−1 = (t; q)K−θ1,n−1 . Hence we have recast the coefficient of the monomial xm1 1 xm2 2 · · ·xmnn in r.h.s. of (6.4) as K∑ θ1,n−1=0 ∏ k∈Ǐ (t; q)θk (q; q)θk (t; q)mn (q; q)mn × ∏ 1≤l≤n−1 (tn−l−1qθl+2θl,n−1+ml,n+1; q)θl(t n−lq2θl+1,n−1+ml+1,n ; q)θl (tn−lqθl+2θl+1,n−1+ml,n ; q)θl(t n−l−1q2θl+1,n−1+ml+1,n+1; q)θl × (t; q)K−θ1,n−1(tnq2θ1,n−1+m1,n ; q)K−θ1,n−1 (q; q)K−θ1,n−1(tn−1q2θ1,n−1+m1,n+1; q)K−θ1,n−1 Changing the running indices as φk = θk, one finds that this is nothing but l.h.s. of (3.1). Then Theorem 3.1 means that this is the coefficient of the monomial xm1 1 xm2 2 · · ·xmnn in Gr(x; q, t). � Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn 17 7 Deformed W algebras of types Cl and Dl In this section, we study a relation between the tableau formulas for Macdonald polynomials of types Cl and Dl and the deformed W algebras of types Cl and Dl. We briefly recall the definition of the deformed W algebras of types Cl and Dl [2]. Let {α1, α2, . . . , αl} and {ω1, ω2, . . . , ωl} be the sets of simple roots and of fundamental weights of a simple Lie algebra g of rank l. Let (·, ·) be the invariant inner product on g and C = (Ci,j)1≤i,j≤l the Cartan matrix where Ci,j = 2(αi, αj)/(αi, αi). Let r∨ be the maximal num- ber of edges connecting two vertices of the Dynkin diagram of g and set D = diag(r1, r2, . . . , rl) where ri = r∨(αi, αi)/2. Denote by I = (Ii,j)1≤i,j≤l the incidence matrix where Ii,j = 2δi,j−Ci,j . Let B = (Bi,j)1≤i,j≤l = DC (i.e. Bi,j = r∨(αi, αi)). We define l × l matrices C(q, t), D(q, t), B(q, t) and M(q, t) as follows Ci,j(q, t) = ( qrit−1 + q−rit ) δi,j − [Ii,j ]q, D(q, t) = diag([r1]q, [r2]q, . . . , [rl]q), B(q, t) = D(q, t)C(q, t), M(q, t) = D(q, t)C(q, t)−1 = D(q, t)B(q, t)−1D(q, t), (7.1) where we use the standard notation [n]q = qn−q−n q−q−1 . Let Hq,t be the Heisenberg algebra with generators ai[n] and yi[n] (i = 1, 2, . . . , l; n ∈ Z) with the following relations [ai[n], aj [m]] = 1 n ( qrin − q−rin )( tn − t−n ) Bi,j ( qn, tn ) δn,−m, [ai[n], yj [m]] = 1 n ( qrin − q−rin )( tn − t−n ) δi,jδn,−m, [yi[n], yj [m]] = 1 n ( qrin − q−rin )( tn − t−n ) Mi,j ( qn, tn ) δn,−m. (7.2) Note that we have aj [n] = l∑ i=1 Ci,j ( qn, tn ) yi[n]. Introduce the generating series: Yi(z) := :exp (∑ m6=0 yi[m]z−m ) :. Here we have used the standard notation for the normal ordering : · · · : for the Heisenberg generators defined as follows. We call the negative modes ai[−n], yi[−n] (n > 0) creation operators and positive modes ai[n], yi[n] (n > 0) annihilation operators. Then the normal ordered product :O: of an operator O is obtained by moving all the creation operators to the left and the annihilation operators to the right. For example we have Yi(z) = exp (∑ m>0 yi[−m]zm ) exp (∑ m>0 yi[m]z−m ) . Remark 7.1. In [2], suitable zero mode factors are included in the generating series Yi(z) to ensure reasonable commutation relations with the screening operators. In this paper, however, we omit writing them since we do not need any arguments based on the screening operators. 18 B. Feigin, A. Hoshino, M. Noumi, J. Shibahara and J. Shiraishi We define a set J and fields Λi(z) = Λ (X) i (z), i ∈ J , for X = Cl and Dl. (i) The Cl series. J := {1, 2, . . . , l, l, l − 1, . . . , 1}, Λi(z) := :Yi ( zq−i+1ti−1 ) Yi−1 ( zq−iti )−1 :, i = 1, 2, . . . , l, Λi(z) := :Yi−1 ( zq−2l+i−2t2l−i ) Yi ( zq−2l+i−3t2l−i+1 )−1 :, i = 1, 2, . . . , l. (7.3) (ii) The Dl series. J := {1, 2, . . . , l, l, l − 1, . . . , 1}, Λi(z) := :Yi ( zq−i+1ti−1 ) Yi−1 ( zq−iti )−1 :, i = 1, 2, . . . , l − 2, Λl−1(z) := :Yl ( zq−l+2tl−2 ) Yl−1 ( zq−l+2tl−2 ) Yl−2 ( zq−l+1tl−1 ) :, Λl(z) := :Yl ( zq−l+2tl−2 ) Yl−1 ( zq−ltl )−1 :, Λl(z) := :Yl−1 ( zq−l+2tl−2 ) Yl ( zq−ltl )−1 :, Λl−1(z) := :Yl−2 ( zq−l+1tl−1 ) Yl−1 ( zq−ltl )−1 Yl ( zq−ltl ) :, Λi(z) := :Yi−1 ( zq−2l+i+2t2l−i−2 ) Yi ( zq−2l+i+1t2l−i−1 )−1 :, i = 1, 2, . . . , l − 2. (7.4) Definition 7.2 ([2]). Define the first generating fields T (X)(x, z) of the deformed W algebras of type X = Cl or Dl with the independent indeterminates x = (x1, x2, . . . , xl): T (X)(x, z) := x1Λ1(z) + · · ·+ xlΛl(z) + 1 xl Λl̄(z) + · · ·+ 1 x1 Λ1̄(z). (7.5) Remark 7.3. It is not an easy task to define the deformed W algebras purely in terms of the generators and relations, except for some simple cases such as the deformed Virasoro algebra. One of the simplest bypass ways is to regard the deformed W as the algebra generated by the T (X)(x, z) given in terms of the Heisenberg generators. Remark 7.4. The xi’s (i = 1, 2, . . . , l) correspond to the zero mode factors, and they paramet- rize the highest weight condition for the representation of the W algebras. Lemma 7.5. For Cl and Dl series we obtain the following operator product expansions f(w/z)Λi(z)Λj(w) = γi,j(z, w) :Λi(z)Λj(w):, where f(z) = f (X)(z) := exp ( − ∞∑ n=1 (qn − q−n)(tn − t−n)M1,1(qn, tn)zn ) , and γi,j(z, w) = γ (X) i,j (z, w) for X = Cl or Dl given by γ (Cl) i,j (z, w) =  1, i = j, γ(w/z), i ≺ j, j 6= ī, γ(z/w), i � j, j̄ 6= i, γ(w/z)γ ( q2i−2l−2t−2i+2lw/z ) , i ≺ j, j = ī, γ(z/w)γ ( q−2i+2l+2t2i−2lz/w ) , i � j, j̄ = i, γ (Dl) i,j (z, w) =  1 i = j, γ(w/z), i ≺ j, j 6= ī, γ(z/w), i � j, j̄ 6= i, γ(w/z)γ ( q2i−2l+2t−2i+2l−2w/z ) , i ≺ j, j = ī, γ(z/w)γ ( q−2i+2l−2t2i−2l+2z/w ) , i � j, j̄ = i. Here we have use the notation γ(z) = (1−t2z)(1−z/q2) (1−z)(1−zt2/q2) . Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn 19 A proof of Lemma 7.5 can be obtained by straightforward but pretty lengthy calculations using (7.1), (7.2), (7.3), (7.4). Therefore we safely can omit the detail. Let |0〉 be the vacuum vector satisfying the annihilation conditions ai[n]|0〉 = 0 for all i and n > 0. Let F be the Fock module obtained by inducing up the one dimensional representa- tion C|0〉 of the algebra of annihilation operators to the whole Heisenberg algebra. Then one can check that the Fourier modes of the generator T (X)(x, z) acting on F are well defined. Let 〈0| to be the dual vacuum satisfying 〈0|ai[−n] = 0 for all i and n > 0. Now we consider the correlation functions 〈0|T (x, z1)T (x, z2) · · ·T (x, zr)|0〉 of types Cl and Dl with the normalization 〈0|Λi(z)|0〉 = 1. Proposition 7.6. Let X = Cl or Dl. Set Il := {1, 2, . . . , l, l, l − 1, . . . , 1}. Let x1, . . . , xl be indeterminates and set xi = 1/xi, 1 ≤ i ≤ l. We have∏ i<j f (X)(zj/zi) · 〈0|T (X)(x, z1)T (X)(x, z2) · · ·T (X)(x, zr)|0〉 = F (X)(x1, . . . , xl|zi, . . . , zr|q, t), where F (X)(x1, . . . , xl|zi, . . . , zr|q, t) = ∑ ε1,ε2,...,εr∈Il xε1xε2 · · ·xεr ∏ 1≤i<j≤r γεi,εj (zi, zj). Proof of Proposition 7.6. In view of the expression (7.5) we only need to know the matrix elements 〈0|Λ(X) ε1 (z1)Λ(X) ε2 (z2) · · ·Λ(X) εr (zr)|0〉, (7.6) for any fixed ε1, . . . , εr ∈ Il. Then Proposition 7.5 and the normal ordering rule imply that (7.6) = ∏ i<j ( f (X)(zj/zi) )−1 · ∏ 1≤i<j≤r γεi,εj (zi, zj). � Remark 7.7. It is clearly seen from the definition that F (X)(x1, . . . , xl|zi, . . . , zr|q, t) is a sym- metric rational function in zi’s. We conjecture that the F (X)(x1, . . . , xl|zi, . . . , zr|q, t) is a sym- metric Laurent polynomial in xi’s associated with the Weyl group of corresponding type X (Cl or Dl). For the case of type Al, we better understand the situation due to the theory of the shuffle algebra (we refer the reader to [1]). Definition 7.8. By principally specializing the zi’s, set Φ(X) r (x|q, t) = F (X) ( x1, . . . , xl|qr−1, qr−2, . . . , 1|q1/2, q1/2t−1/2 ) . Remark 7.9. Remark 7.7 implies that Φ (X) r (x|q, t) is a symmetric Laurent polynomial in xi’s associated with the Weyl group of corresponding type X (Cl or Dl). It is easy to check that the terms which do not vanish under the principal specialization correspond exactly to the set of semi-standard tableaux of type X. Theorem 7.10. We have (i) Φ (Cl) r (x|q, t) = P (Cl) (r) (x; q, t, t2/q), (ii) Φ (Dl) r (x|q, t) = P (Dl) (r) (x; q, t). Proof. Straightforward calculation of Φ (X) r (x|q, t) gives us (1.1) for X = Cl and (1.2) for X = Dl. � 20 B. Feigin, A. Hoshino, M. Noumi, J. Shibahara and J. Shiraishi A Macdonald polynomials of types Cn and Dn We recall briefly the Koornwinder polynomials, and the definitions of the Macdonald polyno- mials of types Cn and Dn as degenerations of the Koornwinder polynomials. A.1 Koornwinder polynomials Let (a, b, c, d, q, t) be a set of complex parameters with |q| < 1. Set α = (abcdq−1)1/2 for simplicity. Let x = (x1, . . . , xn) be a set of independent indeterminates. Koornwinder’s q- difference operator Dx = Dx(a, b, c, d|q, t) is defined by [6] Dx = n∑ i=1 (1− axi)(1− bxi)(1− cxi)(1− dxi) αtn−1(1− x2 i )(1− qx2 i ) ∏ j 6=i (1− txixj)(1− txi/xj) (1− xixj)(1− xi/xj) (Tq,xi − 1) + n∑ i=1 (1− a/xi)(1− b/xi)(1− c/xi)(1− d/xi) αtn−1(1− 1/x2 i )(1− q/x2 i ) ∏ j 6=i (1− txj/xi)(1− t/xixj) (1− xj/xi)(1− 1/xixj) (Tq−1,xi − 1), where Tq±1,xif(x1, . . . , xi, . . . , xn) = f(x1, . . . , q ±1xi, . . . , xn). The Koornwinder polynomial Pλ(x) = Pλ(x; a, b, c, d, q, t) with partition λ = (λ1, . . . , λn) (i.e., λi ∈ Z≥0, λ1 ≥ · · · ≥ λn) is uniquely characterized by the two conditions (a) Pλ(x) is a Sn n (Z/2Z)n invariant Lau- rent polynomial having the triangular expansion in terms of the monomial basis (mλ(x)) as Pλ(x) = mλ(x)+lower terms, (b) Pλ(x) satisfies DxPλ(x) = dλPλ(x). The eigenvalue is given by dλ = n∑ j=1 〈abcdq−1t2n−2jqλj 〉〈qλj 〉 = n∑ j=1 〈αtn−jqλj ;αtn−j〉, where we used the notation 〈x〉 = x1/2 − x−1/2 and 〈x; y〉 = 〈xy〉〈x/y〉 = x+ x−1 − y − y−1 for simplicity of display. A.2 Macdonald polynomials of types Cn and Dn We consider some degeneration of the Koornwinder polynomials to the Macdonald polynomials. As for the details, we refer the readers to [6] and [11]. Specializing the parameters in the Koornwinder polynomial Pλ(x; a, b, c, d, q, t) as (a, b, c, d, q, t)→ ( −b1/2, ab1/2,−q1/2b1/2, q1/2ab1/2, q, t ) , we obtain the Macdonald polynomial of type (BCn, Cn) [6] P (BCn,Cn) λ (x; a, b, q, t) = Pλ ( x;−b1/2, ab1/2,−q1/2b1/2, q1/2ab1/2, q, t ) . Namely, setting D(BCn,Cn) x = ∑ σ1,...,σn=±1 n∏ i=1 (1− ab1/2xσii )(1 + b1/2xσii ) 1− x2σi i · ∏ 1≤i<j≤n 1− txσii x σj i 1− xσii x σj i · n∏ i=1 Tqσi/2,xi , we have P (BCn,Cn) λ (x) = mλ(x) + lower terms, D(BCn,Cn) x P (BCn,Cn) λ (x) = (ab)n/2tn(n−1)/4  ∑ σ1,...,σn=±1 s σ1/2 1 · · · sσn/2n P (BCn,Cn) λ (x), where si = abtn−iqλi . Tableau Formulas for One-Row Macdonald Polynomials of Types Cn and Dn 21 Macdonald polynomials of type Cn and type Dn are obtained as follows P (Cn) λ (x; b, q, t) = P (BCn,Cn) λ (x; 1, b, q, t), P (Dn) λ (x; q, t) = P (BCn,Cn) λ (x; 1, 1, q, t). Acknowledgements This study was carried out within The National Research University Higher School of Economics Academic Fund Program in 2013–2014, research grant No.12-01-0016k. Research of J.S. is supported by the Grant-in-Aid for Scientific Research C-24540206. The financial support from the Government of the Russian Federation within the framework of the implementation of the 5-100 Programme Roadmap of the National Research University Higher School of Economics is acknowledged. The authors sincerely thank the anonymous referees for valuable comments and informing them of the connection between one of our results (Theorem 2.2) and the known fact obtained in [7]. References [1] Feigin B., Hoshino A., Shibahara J., Shiraishi J., Yanagida S., Kernel function and quantum algebras, in Representation Theory and Combinatorics, RIMS Kôkyûroku, Vol. 1689, Res. Inst. Math. Sci. (RIMS), Kyoto, 2010, 133–152, arXiv:1002.2485. [2] Frenkel E., Reshetikhin N., Deformations of W-algebras associated to simple Lie algebras, Comm. Math. Phys. 197 (1998), 1–32, q-alg/9708006. [3] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge, 1990. [4] Hoshino A., Noumi M., Shiraishi J., Some transformation formulas associated with Askey–Wilson polyno- mials and Lassalle’s formulas for Macdonald–Koornwinder polynomials, arXiv:1406.1628. [5] Kashiwara M., Nakashima T., Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra 165 (1994), 295–345. [6] Koornwinder T.H., Askey–Wilson polynomials for root systems of type BC, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, Amer. Math. Soc., Providence, RI, 1992, 189–204. [7] Langer R., Schlosser M.J., Warnaar S.O., Theta functions, elliptic hypergeometric series, and Kawanaka’s Macdonald polynomial conjecture, SIGMA 5 (2009), 055, 20 pages, arXiv:0905.4033. [8] Lassalle M., Some conjectures for Macdonald polynomials of type B, C, D, Sém. Lothar. Combin. 52 (2005), B52h, 24 pages, math.CO/0503149. [9] Lenart C., Haglund–Haiman–Loehr type formulas for Hall–Littlewood polynomials of type B and C, Algebra Number Theory 4 (2010), 887–917, arXiv:0904.2407. [10] Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. [11] Macdonald I.G., Orthogonal polynomials associated with root systems, Sém. Lothar. Combin. 45 (2000), B45a, 40 pages, math.QA/0011046. [12] Noumi M., Shiraishi J., A direct approach to the bispectral problem for the Ruijsenaars–Macdonald q- difference operators, arXiv:1206.5364. [13] Ram A., Yip M., A combinatorial formula for Macdonald polynomials, Adv. Math. 226 (2011), 309–331, arXiv:0803.1146. [14] van Diejen J.F., Emsiz E., Pieri formulas for Macdonald’s spherical functions and polynomials, Math. Z. 269 (2011), 281–292, arXiv:1009.4482. http://arxiv.org/abs/1002.2485 http://arxiv.org/abs/q-alg/9708006 http://arxiv.org/abs/1406.1628 http://dx.doi.org/10.1006/jabr.1994.1114 http://dx.doi.org/10.1090/conm/138/1199128 http://dx.doi.org/10.3842/SIGMA.2009.055 http://arxiv.org/abs/0905.4033 http://arxiv.org/abs/math.CO/0503149 http://dx.doi.org/10.2140/ant.2010.4.887 http://dx.doi.org/10.2140/ant.2010.4.887 http://arxiv.org/abs/0904.2407 http://arxiv.org/abs/math.QA/0011046 http://arxiv.org/abs/1206.5364 http://dx.doi.org/10.1016/j.aim.2010.06.022 http://arxiv.org/abs/0803.1146 http://dx.doi.org/10.1007/s00209-010-0727-0 http://arxiv.org/abs/1009.4482 1 Introduction 2 Transformation formula I 3 Transformation formula II 3.1 The case n=2 3.2 The general case 4 Tableau formulas for Macdonald polynomials of type Dn 5 Transformation formula III 5.1 The case n=2 5.2 The general case 6 Tableau formulas for Macdonald polynomials of type Cn 7 Deformed W algebras of types Cl and Dl A Macdonald polynomials of types Cn and Dn A.1 Koornwinder polynomials A.2 Macdonald polynomials of types Cn and Dn References