Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
The Stäckel transform is applied to the geodesic motion on Euclidean space, through the harmonic oscillator and Kepler-Coloumb potentials, in order to obtain maximally superintegrable classical systems on N-dimensional Riemannian spaces of nonconstant curvature. By one hand, the harmonic oscillator...
Saved in:
Date: | 2011 |
---|---|
Main Authors: | Ballesteros, A., Enciso, A., Herranz, F.J., Ragnisco, O., Riglioni, D. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2011
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147172 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform / A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, D. Riglioni // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 48 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
by: Ragnisco, O., et al.
Published: (2007) -
Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature
by: Herranz, F.J., et al.
Published: (2006) -
Classical and Quantum Superintegrability of Stäckel Systems
by: Błaszak, M., et al.
Published: (2017) -
Superintegrable Stäckel Systems on the Plane: Elliptic and Parabolic Coordinates
by: Tsiganov, A.V.
Published: (2012) -
A Family of Exactly Solvable Radial Quantum Systems on Space of Non-Constant Curvature with Accidental Degeneracy in the Spectrum
by: Ragnisco, O., et al.
Published: (2010)