Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential
In the three-dimensional flat space, a classical Hamiltonian, which has five functionally independent integrals of motion, including the Hamiltonian, is characterized as superintegrable. Kalnins, Kress and Miller (J. Math. Phys. 48 (2007), 113518, 26 pages) have proved that, in the case of nondege...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147173 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential / Y. Tanoudis, C. Daskaloyannis // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147173 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1471732019-02-14T01:24:46Z Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential Tanoudis, Y. Daskaloyannis, C. In the three-dimensional flat space, a classical Hamiltonian, which has five functionally independent integrals of motion, including the Hamiltonian, is characterized as superintegrable. Kalnins, Kress and Miller (J. Math. Phys. 48 (2007), 113518, 26 pages) have proved that, in the case of nondegenerate potentials, i.e. potentials depending linearly on four parameters, with quadratic symmetries, posses a sixth quadratic integral, which is linearly independent of the other integrals. The existence of this sixth integral imply that the integrals of motion form a ternary quadratic Poisson algebra with five generators. The superintegrability of the generalized Kepler–Coulomb potential that was investigated by Verrier and Evans (J. Math. Phys. 49 (2008), 022902, 8 pages) is a special case of superintegrable system, having two independent integrals of motion of fourth order among the remaining quadratic ones. The corresponding Poisson algebra of integrals is a quadratic one, having the same special form, characteristic to the nondegenerate case of systems with quadratic integrals. In this paper, the ternary quadratic associative algebra corresponding to the quantum Verrier–Evans system is discussed. The subalgebras structure, the Casimir operators and the the finite-dimensional representation of this algebra are studied and the energy eigenvalues of the nondegenerate Kepler–Coulomb are calculated. 2011 Article Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential / Y. Tanoudis, C. Daskaloyannis // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R12; 37J35; 70H06; 17C90 DOI:10.3842/SIGMA.2011.054 http://dspace.nbuv.gov.ua/handle/123456789/147173 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In the three-dimensional flat space, a classical Hamiltonian, which has five functionally independent integrals of motion, including the Hamiltonian, is characterized as
superintegrable. Kalnins, Kress and Miller (J. Math. Phys. 48 (2007), 113518, 26 pages)
have proved that, in the case of nondegenerate potentials, i.e. potentials depending linearly on four parameters, with quadratic symmetries, posses a sixth quadratic integral, which is linearly independent of the other integrals. The existence of this sixth integral imply that the integrals of motion form a ternary quadratic Poisson algebra with five generators. The superintegrability of the generalized Kepler–Coulomb potential that was investigated by Verrier and Evans (J. Math. Phys. 49 (2008), 022902, 8 pages) is a special case of superintegrable system, having two independent integrals of motion of fourth order among the remaining quadratic ones. The corresponding Poisson algebra of integrals is a quadratic one, having the same special form, characteristic to the nondegenerate case of systems with quadratic integrals. In this paper, the ternary quadratic associative algebra corresponding to the quantum Verrier–Evans system is discussed. The subalgebras structure, the Casimir operators and the the finite-dimensional representation of this algebra are studied and the energy eigenvalues of the nondegenerate Kepler–Coulomb are calculated. |
format |
Article |
author |
Tanoudis, Y. Daskaloyannis, C. |
spellingShingle |
Tanoudis, Y. Daskaloyannis, C. Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Tanoudis, Y. Daskaloyannis, C. |
author_sort |
Tanoudis, Y. |
title |
Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential |
title_short |
Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential |
title_full |
Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential |
title_fullStr |
Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential |
title_full_unstemmed |
Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential |
title_sort |
algebraic calculation of the energy eigenvalues for the nondegenerate three-dimensional kepler-coulomb potential |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147173 |
citation_txt |
Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential / Y. Tanoudis, C. Daskaloyannis // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT tanoudisy algebraiccalculationoftheenergyeigenvaluesforthenondegeneratethreedimensionalkeplercoulombpotential AT daskaloyannisc algebraiccalculationoftheenergyeigenvaluesforthenondegeneratethreedimensionalkeplercoulombpotential |
first_indexed |
2025-07-11T01:32:06Z |
last_indexed |
2025-07-11T01:32:06Z |
_version_ |
1837312278091792384 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 7 (2011), 054, 11 pages
Algebraic Calculation of the Energy Eigenvalues
for the Nondegenerate Three-Dimensional
Kepler–Coulomb Potential?
Yannis TANOUDIS and Costas DASKALOYANNIS
Mathematics Department, Aristotle University of Thessaloniki, 54124 Greece
E-mail: tanoudis@math.auth.gr, daskalo@math.auth.gr
Received February 01, 2011, in final form May 22, 2011; Published online June 03, 2011
doi:10.3842/SIGMA.2011.054
Abstract. In the three-dimensional flat space, a classical Hamiltonian, which has five
functionally independent integrals of motion, including the Hamiltonian, is characterized as
superintegrable. Kalnins, Kress and Miller (J. Math. Phys. 48 (2007), 113518, 26 pages)
have proved that, in the case of nondegenerate potentials, i.e. potentials depending linearly
on four parameters, with quadratic symmetries, posses a sixth quadratic integral, which
is linearly independent of the other integrals. The existence of this sixth integral imply
that the integrals of motion form a ternary quadratic Poisson algebra with five generators.
The superintegrability of the generalized Kepler–Coulomb potential that was investigated
by Verrier and Evans (J. Math. Phys. 49 (2008), 022902, 8 pages) is a special case of
superintegrable system, having two independent integrals of motion of fourth order among
the remaining quadratic ones. The corresponding Poisson algebra of integrals is a quadratic
one, having the same special form, characteristic to the nondegenerate case of systems with
quadratic integrals. In this paper, the ternary quadratic associative algebra corresponding
to the quantum Verrier–Evans system is discussed. The subalgebras structure, the Casimir
operators and the the finite-dimensional representation of this algebra are studied and the
energy eigenvalues of the nondegenerate Kepler–Coulomb are calculated.
Key words: superintegrable; quadratic algebra; Coulomb potential; Verrier–Evans potential;
ternary algebra
2010 Mathematics Subject Classification: 81R12; 37J35; 70H06; 17C90
1 Introduction
In the N -dimensional space one Hamiltonian system characterized as superintegrable if it has
2N − 1 integrals.
Kalnins, Kress and Miller have studied [1, 2] three-dimensional superintegrable systems,
whose the potentials depend on four constants; these systems are referred as nondegenerate po-
tentials. The case in which one three-dimensional potential has fewer “free parameters” than
four, defines a potential, which is called degenerate potential. Verrier and Evans [3] have intro-
duced a new classical superintegrable Hamiltonian,
H =
1
2
(
p2x + p2y + p2z
)
− k√
x2 + y2 + z2
+
k1
x2
+
k2
y2
+
k3
z2
,
which is a nondegenerate generalized Kepler–Coulomb system. The above Hamiltonian is a su-
perintegrable system with quadratic and quartic, in momenta, integrals of motion. The quartic
?This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special
Functions (S4)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html
mailto:tanoudis@math.auth.gr
mailto:daskalo@math.auth.gr
http://dx.doi.org/10.3842/SIGMA.2011.054
http://www.emis.de/journals/SIGMA/S4.html
2 Y. Tanoudis and C. Daskaloyannis
integrals are generalizations of the Laplace–Runge–Lenz vectors of the ordinary Kepler–Coulomb
potential.
The quantum form of the nondegenerate Kepler–Coulomb Hamiltonian is
H = −~2
2
(∂xx + ∂yy + ∂zz)−
~2µ√
x2 + y2 + z2
+
~2(4µ21 − 1)
8x2
+
~2(4µ22 − 1)
8y2
+
~2(4µ23 − 1)
8z2
. (1)
Kalnins, Williams, Miller and Pogosyan in [4] have studied the energy eigenvalues using the
method of separation of variables for potentials, one among them is the generalized Kepler–
Coulomb system. In this paper the energy eigenvalues of the nondegenerate generalized Kepler–
Coulomb system are calculated by using algebraic methods. In Section 2 we recall the method of
calculation of energy eigenvalues using quadratic ternary algebras [5]. In Section 3 the structure
of the algebra generated by the integrals of the nondegenerate Kepler–Coulomb system is studied.
In Section 4 we apply the method of Section 2 and we calculate the energy eigenvalues of the
nondegenerate Coulomb system. The commutation relations of the quadratic algebra are given
in [6], for clarity reasons these relations are reproduced in the Appendix.
2 Quadratic algebra for two-dimensional quantum
superintegrable systems with quadratic integrals
Any two-dimensional quantum superintegrable system with integrals quadratic in momenta is
described by the Hamiltonian H and two functionally independent integrals of motion A and B.
The integrals A and B commute with Hamiltonian H, but they don’t commute between them
[H,A] = 0, [H,B] = 0 and [A,B] 6= 0.
The above relations can be presented by the following diagram
A ___ H ___ B , (2)
where the dashed line joining two operators means that the corresponding commutator is zero,
the absence of any joining line between A and B means that the corresponding commutator is
different to zero
Let A = C〈A,B,H〉 be the unital algebra generated by the operators A, B, H, the generators
of this algebra satisfy ternary relations, which are quadratic extensions of the enveloping algebra
of a Lie triple system [7]
[A, [A,B]] = αA2 + βB2 + γ{A,B}+ δA+ εB + ζ,
[B, [A,B]] = aA2 − γB2 − α{A,B}+ dA− δB + z. (3)
In a Lie triple system [7] in the right hand side of the above equations are only linear functions of
the operators A and B. In the case of superintegrable systems with quadratic integrals of motion
there are also quadratic terms. Some of the coefficients of the ternary quadratic algebra (3)
depend generally on the energy H
δ = δ1H + δ0, ε = ε1H + ε0,
ζ = ζ2H
2 + ζ1H + ζ0, d = d1H + d0, z = z2H
2 + z1H + z0. (4)
Eigenvalues for the Nondegenerate Three-Dimensional Kepler–Coulomb Potential 3
We are interested to calculate the energy eigenvalues of the operator H, therefore we search
to calculate the values of the energy corresponding to finite-dimensional representations of the
algebra (3).
There is a Casimir [K,A] = [K,B] = 0 and K = K(H):
K = [A,B]2 − α{A2, B} − γ{A,B2}+
(
αγ − δ +
aβ
3
)
{A,B} − 2β
3
B3
+
(
γ2 − ε− αβ
3
)
B2 +
(
−γδ + 2ζ − βd
3
)
B +
2a
3
A3
+
(
d+
aγ
3
+ α2
)
A2 +
(aε
3
+ αδ + 2z
)
A = h0 + h1H + h2H
2 + h3H
3. (5)
In [8] the classical two-dimensional superintegrals with quadratic integrals of motion satisfy
a Poisson quadratic algebra. All the quantum superintegrable systems with quadratic integrals
of motion satisfy the algebra (2)–(5) [9]. The classical three-dimensional superintegrable systems
with quadratic integrals on a flat space have a structure of ternary quadratic algebra [10].
In [5] the unitary representation of this algebra is studied. In the case of γ 6= 0 and β = 0,
the eigenvalues of the operator A are given by the formula
A(x) =
γ
2
(
(x+ u)2 − 1
4
− ε
γ2
)
,
where x = 0, 1, 2, . . .. The energy eigenvalues of the operator H with degeneracy equal to p+ 1,
where p = 0, 1, 2, . . . are determined by solving the system of equations
Φ(0, u) = 0, Φ(p+ 1, u) = 0, and Φ(x, u) > 0, where x = 1, 2, . . . , p.
The structure function is given by the next relation
Φ(x) = −3072K(2(u+ x)− 1)2γ6 − 48(2(u+ x)− 3)(2(u+ x)− 1)4
× (2(u+ x) + 1)γ6
(
εα2 − γδα− dγ2 + aγε
)
+ (2(u+ x)− 3)2(2(u+ x)− 1)4
× (2(u+ x) + 1)2
(
3α2 + 4aγ
)
γ8 + 768
(
4ζγ2 − 2δεγ + αε2
)2
+ 32(2(u+ x)− 1)2
×
(
12(u+ x)2 − 12(u+ x)− 1
)
γ4
(
8zγ3 + 2δ2γ2 − 4dεγ2 + 4αζγ2 + 2aε2γ
− 6αδεγ + 3α2ε2
)
− 256(2(u+ x)− 1)2γ2
(
−4zγ5 + 2δ2γ4 + 2dεγ4 + 4αζγ4
+ 12zεγ3 − 12δζγ3 − 3dε2γ2 + 6δ2εγ2 + 12αεζγ2 + aε3γ − 9αδε2γ + 3α2ε3
)
. (6)
In [5] this method is used for the calculation of energy eigenvalues for the two-dimensional su-
perintegrable systems on the plane. This quadratic, cubic and generally polynomial algebras is
the subject of current investigations. The cubic extension of the above algebra for superinte-
grable systems with an integral of motion cubic in momenta is studied in a series of papers by
I. Marquette and P. Winternitz [11, 12], by I. Marquette [13, 14, 15]. The case of higher order
integrals of motion can be found in [16], the case of one-dimensional position-dependent mass
Schrödinger equation in [17]. These methods were applied to three-dimensional MICZ-Kepler
system in [18].
3 Quadratic algebra for the nondegenerate
Kepler–Coulomb system
The nondegenerate Kepler–Coulomb system (1) possesses three quadratic integrals which de-
noted by A1, A2, B2 and one integral of fourth order in addition to last mentioned quadratic
4 Y. Tanoudis and C. Daskaloyannis
ones, which denoted by B1
A1 =
1
2
J2 +
~2(4µ21 − 1)(y2 + z2)
8x2
+
~2(4µ22 − 1)(x2 + z2)
8y2
+
~2(4µ23 − 1)(x2 + y2)
8z2
,
A2 =
1
2
J2
3 +
~2(4µ21 − 1)y2
8x2
+
~2(4µ22 − 1)x2
8y2
,
B2 =
1
2
J2
2 +
~2(4µ21 − 1)z2
8x2
+
~2(4µ23 − 1)x2
8z2
,
px = −i~∂x, py = −i~∂y, pz = −i~∂z, J1 = i~(z∂y − y∂z),
J2 = i~(x∂z − z∂x), J3 = i~(y∂x − x∂y), J = J2
1 + J2
2 + J2
3 ,
B1 =
(
1
2
{J1, py} −
1
2
{J2, px} − 2z
(
−~2µ
2
√
x2 + y2 + z2
+
~2(4µ21 − 1)
8x2
+
~2(4µ22 − 1)
8y2
+
~2(4µ23 − 1)
8z2
))2
+
{
1
4
({x, px}+ {y, py}+ {z, pz})2 ,
~2(4µ23 − 1)
8z2
}
+
5~4(4µ21 − 1)
16z2
.
The above operators satisfy the following zero commutation relations
[H,Ai] = 0, [H,Bi] = 0, [A1, B2] = 0, [A2, B1] = 0. (7)
According to Kalnins–Kress–Miller “5 to 6” theorem [1], in any three-dimensional Hamiltonian
system with nondegenerate potential with quadratic integrals of motion, there is always exist
a 6th integral that is functionally depended with the other integrals. This sixth integral of
motion is linearly independent with the 5 functionally independent integrals. In the case of
Kepler–Coulomb potential the last mentioned sixth integral is an integral of fourth order in
momenta similar to the integral B1, given by the following formula
F =
(
−1
2
{J1, pz}+
1
2
{J3, px}
− 2y
(
−~2µ
2
√
x2 + y2 + z2
+
~2(4µ21 − 1)
8x2
+
~2(4µ22 − 1)
8y2
+
~2(4µ23 − 1)
8z2
))2
+
{
1
4
({x, px}+ {y, py}+ {z, pz})2 ,
~2(4µ22 − 1)
8y2
}
+
5~4(4µ22 − 1)
16y2
.
This integral satisfies the following commutation relations
[H,F ] = 0, [F,B2] = 0. (8)
The graph representing the zero commutation relations (7) and (8) is the following one
H
n n n n n n n n
|
|
|
|
�
�
�
B
B
B
B
QQQQQQQQ
F ___ B2
___ A1
___ A2
___ B1
In Appendix A all the non zero ternary relations are given. By inspecting the relations (14)
and (15) in the Appendix, we can see that the unital algebra generated by the operators A1,
B1, A2, H corresponds to the graph:
H
|
|
|
|
�
�
�
C
C
C
C
A1
___ A2
___ B1
(9)
Eigenvalues for the Nondegenerate Three-Dimensional Kepler–Coulomb Potential 5
This is a quadratic subalgebra corresponding to some quadratic algebra of the form given by
equations (3)–(5) but the coefficients (4) depend on the operators H and A2
α = −16~2H, γ = 4~2, δ = 16~2A2H − 2~4(4µ21 + 4µ22 + 12µ23)H − 4~6µ2,
ε = 2~4(2µ21 + 2µ22 + 2µ23 − 3), d = 16~4(5− 4µ23)H
2, a = 0,
z = −32~4A2H
2 + 4~8µ2(3− 4µ23)H
+ 2~6(12µ21 + 12µ22 − 16µ43 − 8(2µ21 + 2µ22 − 3)− 1)H2,
ζ = 4~6µ2A2 + 2~6µ2(1− 2µ23) + 2(4µ21 + 4µ22 + 4µ23)A2H
+ ~6(1− 2µ23(4µ
2
1 + 4µ22 + 4µ23 − 5))H. (10)
Moreover, the above quadratic subalgebra possesses a Casimir invariant given from the following
expression
K1 = 4µ4
(
µ23 − 1
)
~12 + 4~10µ2
(
4µ43 − 23µ23 + 4µ21
(
µ23 − 1
)
+ 4µ22
(
µ23 − 1
)
+ 8
)
H
+ 56~8µ2A2H + ~8
(
16
(
µ23 − 1
)
µ41 + 4
(
8µ43 − 34µ23 + 8µ22
(
µ23 − 1
)
+ 5
)
µ21 + 97µ23
+ 4
(
4µ63 − 42µ43 + 4µ42
(
µ23 − 1
)
+ µ22
(
8µ43 − 34µ23 + 5
))
+ 15
)
H2
+ 4~6
(
28µ21 + 28µ22 + 52µ23 − 31
)
A2H
2 − 48~4A2
2H
2.
We must remark that Marquette [18] studying the MICZ-Kepler system has found quadratic
algebras with coefficients, which depend of two commuting operators.
By inspecting the relations (16) and (17) in the Appendix, we can see that the unital algebra
generated by the operators A2, B2, A1 corresponds to the graph
B2
___ A1
___ A2 . (11)
This is a quadratic subalgebra corresponding to some quadratic algebra of the form given by
equations (3)–(5) the coefficients (4) depend on the operator A1
α = γ = 4~2, δ = −4~2A1 + ~4(2µ21 − 3), ε = 2~4(2µ21 + 2µ22 − 3),
ζ = ~6(µ22 − µ21) + ~4(3− 4µ21)A1, β = a = 0, d = −2~4(2µ21 + 2µ22 − 3),
z = ~6(µ21 − µ23) + ~4(4µ21 − 3)A1. (12)
This subalgebra possesses a Casimir invariant that it is given as follows
K2 =
1
8
((
−32
(
µ23 − 1
)
µ22 + 32µ23 + 2
)
µ21 − 30µ23 + µ22
(
32µ23 − 30
)
+ 9
)
~8
+
3
2
~6
(
12µ21 − 7
)
A1 + 4~4
(
µ21 − 1
)
A2
1.
The relations (18) and (19) in the Appendix imply that the quadratic subalgebra corresponding
to the following diagram
H
}
}
}
}
�
�
�
C
C
C
C
F ___ B2
___ A1
is a quadratic subalgebra of the form (3)–(5).
6 Y. Tanoudis and C. Daskaloyannis
4 Calculation of the energy eigenvalues
Using the theory given in Section 2 for the subalgebra generated by the operators A2, B2, A1
(see graph (11) and the coefficients given by equation (12)), the structure function Φ(u, x) in
equation (6) is written
Φ(u, x) = 3 · 218~16 (2(u+ x)− µ1 − µ2 − 1) (2(u+ x) + µ1 − µ2 − 1)
× (2(u+ x)− µ1 + µ2 − 1) (2(u+ x) + µ1 + µ2 − 1)
×
(
8~2(u+ x)2 − 8~2(µ3 + 1)(u+ x)− 2~2
(
µ21 + µ22 −
1
2
)
+ 4~2
(
µ3 +
1
2
)
− 4A1
)(
8~2(u+ x)2 + 8~2(µ3 − 1)(u+ x)
− 2~2
(
µ21 + µ22 −
1
2
)
− 4~2
(
µ3 −
1
2
)
− 4A1
)
.
The value of parameter u corresponding to the representation of the ternary algebra of dimension
p+ 1 as well the eigenvalues of the operator A1 determined by the next relations
Φ(u, 0) = Φ(u, p+ 1) = 0.
Since the structure function is a positive for x = 1, 2, . . . , p the values of u and the corresponding
eigevalues of A2 and A1 can be calculated analytically.
Class I.
u =
1
2
+
µ1 + µ2
2
,
2A2(x) = ~2M2 − ~2
(
µ21 + µ22
)
+
~2
2
,
where M = 2x+ µ1 + µ2 + 1, x = 0, 1, . . . , p,
Φ(x) = 3~20228x(p− x+ 1)(x+ µ1)(x+ µ2)(x+ µ1 + µ2)(p− x+ µ3 + 1)
× (p+ x+ µ1 + µ2 + 1)(p+ x+ µ1 + µ2 + µ3 + 1).
Class II.
u = −1
2
(1 + 2p)− µ1 + µ2
2
,
2A2(x) = ~2M2 − ~2
(
µ21 + µ22
)
+
~2
2
,
where M = 2(p− x) + µ1 + µ2 + 1,
Φ(x) = 3~20228x(p− x+ 1)(p− x+ µ1 + 1)(p− x+ µ2 + 1)(2p− x+ µ1 + µ2 + 2)
× (p− x+ µ1 + µ2 + 1)(x− µ3)(2p− x+ µ1 + µ2 + µ3 + 2).
The eigenvalues of A1 have the form:
2A1 = ~2J(J + 1)− ~2(µ21 + µ22 + µ23) +
3
4
~2, (13)
where J = 2p+ µ1 + µ2 + µ3 + 3
2 .
The eigenvalues of the operator A1 are given by the formula (13), where p ≥ m. The
eigenvalues are calculated using the method described in Section 2 for the subalgebra generated
by the operators A2, B2, A1.
Eigenvalues for the Nondegenerate Three-Dimensional Kepler–Coulomb Potential 7
Let now consider the subalgebra generated by the operators A1, B1, A2, H, see equations (9)
and (10). The coefficients (10) of this algebra contain the eigenvalues of the operator A2, which
was calculated previously
A2 =
~2
2
(2m+ µ1 + µ2 + 1)2 − ~2
2
(
µ21 + µ22
)
+
~2
4
,
where m = x or m = p− x with x = 0, . . . , p and p ≥ m.
The eigenvalues of the of the operator A1, using the theory of Section 2 for the subalgebra
generated by the operators A1, B1, A2, H is given by the formula
A1(y) =
γ
2
(
(y + v)2 − 1
4
− ε
γ2
)
.
From (10) we have that
γ = 4~2, ε = 2~4
(
2µ21 + 2µ22 + 2µ23 − 3
)
.
This formula should coincide with the formula calculated by equation (13), therefore
y = p and v =
1
2
(2 + µ1 + µ2 + µ3).
The structure function Φ(v, y) has the following form
Φ(v, y) = 3 · 218~16
(
2~2µ2 + (4(v + y)− 3)2H
) (
2~2µ2 + (4(v + y)− 1)2H
)(
8~2(v + y)2 − 8~2(v + y)(µ3 + 1)− 2~2
(
µ21 + µ22 − µ23 −
1
2
)
+ 4~2
(
µ3 +
1
2
)
− 4A2
)(
8~2(v + y)2 + 8~2(v + y)(µ3 − 1)
− 2~2
(
µ21 + µ22 − µ23 −
1
2
)
− 4~2
(
µ3 −
1
2
)
− 4A2
)
,
where y = m, . . . , q. The final form of the function Φ(v, y) with the above substitutions of A2
and v is
Φ(v, y) = 3 · 224~20(y −m)(1 +m+ y + µ1 + µ2)(y −m+ µ3)(1 +m+ y + µ1 + µ2 + µ3)
×
(
2~2µ2 + (1 + 4y + 2µ1 + 2µ2 + 2µ3)
2H
)
×
(
2~2µ2 + (3 + 4y + 2µ1 + 2µ2 + 2µ3)
2H
)
.
The condition for calculating the energy eigenvalues is
Φ(v,m) = 0, Φ(v, q + 1) = 0, Φ(v, y) > 0 for y = m,m+ 1, . . . , q.
The energy eigenvalues are calculated using the above relations
H = − ~2µ2
2(52 + 2q + µ1 + µ2 + µ3)2
, H = − ~2µ2
2(52 + 2q + 1 + µ1 + µ2 + µ3)2
,
where q = 0, 1, . . ..
8 Y. Tanoudis and C. Daskaloyannis
5 Discussion
Using pure algebraic methods of [5], we can calculate the energy eigenvalues of the nondegenerate
three-dimensional Kepler–Coulomb system, which is discussed be Verrier and Evans [3].
This method can be applied to other three-dimensional nondegenerate superintegrable sys-
tems and it is the object of current investigation. The multidimensional ternary quadratic
algebra is an algebra generated by the operators Si with i = 1, 2, . . . , n satisfying the relations
[Si, [Sj , Sk]] =
∑
r≤s
drsijk {Sr, Ss}+
∑
r
crijkSr + fijk.
The structure constants drsijk, crijk, fijk should obey to complicated restrictions, due the Jacobi
kind relations for the quadratic algebra. The study of this kind of algebras, which describe many
multidimensional superintegrable systems is an interesting mathematical topic, which is not yet
been explored.
A Appendix: Ternary quadratic algebra
[[A1, B1], A2] = [[A2, B2], A1] = [[A1, F ], B2] = 0,
[A1, [A1, B1]] = −16~2HA2
1 + 4~2{A1, B1}+
(
16~2A2H − 2~4
(
4µ21 + 4µ22 + 12µ23 − 5
)
H
− 4~6µ2
)
A1 + ~4
(
4µ21 + 4µ22 + 4µ23 − 6
)
B1 + 2~8µ2
(
1− 2µ23
)
+ 4~6µ2A2
+ ~6
(
1− 2µ23
(
4µ21 + 4µ22 + 4µ23 − 5
))
H
+ 2~4
(
4µ21 + 4µ22 + 4µ23 − 5
)
A2H, (14)
[B1, [A1, B1]] = −4~2B2
1 + 16~2H{A1, B1}+ 16~4(5− 4µ23)H
2A1
−
(
16~2A2H − 2~4
(
4µ21 + 4µ22 + 12µ23 − 5
)
H − 4~6µ2
)
B1
− 2~6
(
16µ43 + 8
(
2µ21 + 2µ22 − 3
)
µ23 − 12µ21 − 12µ22 + 1
)
H2
+ 4~8µ2
(
3− 4µ23
)
H − 32~4A2H
2, (15)
[A2, [A2, B2]] = 4~2A2
2 + 4~2{A2, B2}+
(
−4~2A1 + ~4
(
4µ21 − 3
))
A2
+ ~4
(
~2µ22 −
1
4
(
~2 + 16µ21 − 12
))
A1 −
~6
4
(
4µ21 − 1
)
+ 2~4
(
2µ21 + 2µ22 − 3
)
B2, (16)
[B2, [A2, B2]] = −4~2B2
2 − 4~2{A2, B2} − 2~4
(
2µ21 + 2µ23 − 3
)
A2
−
(
−4~2A1 + ~4
(
4µ21 − 3
))
B2 +
1
4
~6
(
4µ21 − 1
)
+
1
4
~4
(
−4µ23~2 + ~2 + 16µ21 − 12
)
A1, (17)
[A1, [A1, F ]] =
(
16~2B2H − 2~4
(
4µ21 + 12µ22 + 4µ23 − 5
)
H − 4~6µ2
)
A1
− 16~2HA2
1 + 4~2{A1, F}+ ~4
(
4µ21 + 4µ22 + 4µ23 − 6
)
F + 4~6µ2B2
+ ~6
(
1− 2µ22
(
4µ21 + 4µ22 + 4µ23 − 5
))
H + 2~4
(
4µ21 + 4µ22 + 4µ23 − 5
)
B2H
+ 2~8µ2
(
1− 2µ22
)
, (18)
[F, [A1, F ]] = −2~6
(
4
(
4µ22 − 3
)
µ21 − 12µ23 + 8µ22
(
2µ22 + 2µ23 − 3
)
+ 1
)
H2
−
(
16~2B2H − 2~4
(
4µ21 + 12µ22 + 4µ23 − 5
)
H − 4~6µ2
)
F − 4~2F 2 (19)
+ 16~2H{A1, F}+ 16~4
(
5− 4µ22
)
H2A1 + 4~8µ2
(
3− 4µ22
)
H − 32~4B2H
2,
[A1, [B1, B2]] = [[A1, B1], B2] = ~6
(
8µ43 +
(
8µ21 − 6
)
µ23 + µ22
(
8µ23 − 4
)
− 1
)
H
+ 2µ2~8
(
2µ23 − 1
)
+ 16~2A2
1H − 16~2A1A2H
Eigenvalues for the Nondegenerate Three-Dimensional Kepler–Coulomb Potential 9
+ 2~4
(
4µ21 + 4µ22 + 12µ23 − 5
)
A1H − 2~4
(
4µ21 + 4µ22 + 4µ23 − 3
)
A2H
+ 4~4B2H − 2~2{A1, B1} − 4~6µ2A2 − 4~4
(
µ21 + µ23 − 1
)
B1
+ 2~4
(
1− 2µ23
)
F − 2~2{B1, B2} − 2~2{A1, F}+ 2~2{A2, F}+ 4µ2~6A1,
[[B1, B2], A2] = [[A2, B2], B1] = −4~6µ2A1 + 4~6µ2A2 + 4~6µ2B2 + ~4B1 + 2~4F
− 16~2A2
1H + 16~2A1A2H + 16~2A1B2H
− 2~4
(
4µ21 + 4µ22 + 4µ23 + 1
)
A1H − 2~2{B1, B2}+ 2~2{A1, F}
− 2~2{A2, F} −
1
2
~6
(
4µ21 + 4µ22 + 4µ23 + 1
)
H − 4~2A2B1 − ~8µ2
+ 2~4
(
4µ21 + 4µ22 + 4µ23 − 1
)
A2H + 2~4
(
4µ21 + 4µ22 + 4µ23 − 3
)
B2H
+ 2~2{A1, B1},
[[A1, F ], A2] = [[A2, F ], A1] = ~6
(
8µ42 +
(
8µ21 + 8µ23 − 6
)
µ22 − 4µ23 − 1
)
H
+ 2~8µ2
(
2µ22 − 1
)
+ 16~2A2
1H − 16~2A1B2H
+ 2~4
(
4µ21 + 12µ22 + 4µ23 − 5
)
A1H + 4~4A2H
− 2~4
(
4µ21 + 4µ22 + 4µ23 − 3
)
B2H − 2~2{A1, B1}+ 2~2{B1, B2}
− 2~2{A1, F}+ 4~6µ2A1 + 2~4
(
1− 2µ22
)
B1 − 4~6µ2B2
− 4~4
(
µ21 + µ22 − 1
)
F − 2~2{A2, F},
[[A2, F ], B1] = [[B1, F ], A2] = 64~2A2
1H
2 − 64~2A1A2H
2 − 64~2A1B2H
2 − 8~2{A1, B1}H
+ 16~2A2B1H + 8~2{B1, B2}H − 8~2{A1, F}H + 8~2{A2, F}H
+ 8~4
(
4µ21 + 4µ22 + 4µ23 + 1
)
A1H
2 − 8~4
(
4µ21 + 4µ22 + 4µ23 − 1
)
A2H
2
− 8~4
(
4µ21 + 4µ22 + 4µ23 − 3
)
B2H
2 + 16~6µ2A1H − 16~6µ2A2H
− 16~6µ2B2H − 8~4FH − 4~4B1H + 2~6
(
4µ21 + 4µ22 + 4µ23 + 1
)
H2
+ 4~8µ2H,
[[A2, B2], F ] = [[A2, F ], B2] = 16~2A2
1H − 16~2A1A2H − 16~2A1B2H
+ 2~4
(
4µ21 + 4µ22 + 4µ23 + 1
)
A1H − 2~4
(
4µ21 + 4µ22 + 4µ23 − 3
)
A2H
− 2~4
(
4µ21 + 4µ22 + 4µ23 − 1
)
B2H − 2~2{A1, B1}+ 2~2{B1, B2}
− 2~2{A1, F}+ 2~2{A2, F}+ 4~2FB2 + 4~6µ2A1 − 4~6µ2A2 − 4~6µ2B2
− 2~4B1 − ~4F +
1
2
~6
(
4µ21 + 4µ22 + 4µ23 + 1
)
H + ~8µ2,
[[B1, B2], F ] = [[B1, F ], B2] = −64~2A2
1H
2 + 64~2A1A2H
2 + 64~2A1B2H
2
+ 8~2{A1, B1}H + 8~2{A1, F}H − 8~2{A2, F}H − 8~2{B1, B2}H
− 16~2B2FH − 8~4
(
4µ21 + 4µ22 + 4µ23 + 1
)
A1H
2
+ 8~4
(
4µ21 + 4µ22 + 4µ23 − 3
)
A2H
2 + 8~4
(
4µ21 + 4µ22 + 4µ23 − 1
)
B2H
2
− 16~6µ2A1H + 16~6µ2A2H + 16~6µ2B2H + 4~4FH + 8~4B1H
− 2~6
(
4µ21 + 4µ22 + 4µ23 + 1
)
H2 − 4~8µ2H,
[[B1, F ], A1] = 8~2{A1, B1}H − 8~2{B1, B2}H + 8~2{A2, F}H − 8~2{A1, F}H
− 16~4A2H
2 + 16~4B2H
2 + 8~4
(
1− 2µ23
)
FH + 8~4
(
2µ22 − 1
)
B1H
+ 16~6
(
µ23 − µ22
)
H2,
[[A1, B1], F ] = 64~2A2
1H
2 − 64~2A1A2H
2 − 64~2A1B2H
2 + 8~2{B1, B2}H
− 8~2{A1, B1}H + 8~4
(
4µ21 + 4µ22 + 4µ23 + 5
)
A1H
2
10 Y. Tanoudis and C. Daskaloyannis
− 8~4
(
4µ21 + 4µ22 + 4µ23 + 1
)
A2H
2 − 8~4
(
4µ21 + 4µ22 + 4µ23 + 3
)
B2H
2
+ 4~4
(
1− 4µ22
)
B1H + 16~6µ2A1H − 16~6µ2A2H − 16~6µ2B2H
− 4~4FH + 2~2{B1, F}+ 2~6
(
4µ21 + 12µ22 + 4µ23 − 1
)
H2 + 4~8µ2H,
[[A1, F ], B1] = 64~2A2
1H
2 − 64~2A1A2H
2 − 64~2A1B2H
2
+ 8~4
(
4µ21 + 4µ22 + 4µ23 + 5
)
A1H
2 − 8~4
(
4µ21 + 4µ22 + 4µ23 + 3
)
A2H
2
− 8~4
(
4µ21 + 4µ22 + 4µ23 + 1
)
B2H
2 − 8~2{A1, F}H + 8~2{A2, F}H
+ 16~6µ2A1H − 16~6µ2A2H − 16~6µ2B2H + 4~4
(
1− 4µ23
)
FH
− 4~4B1H + 2~2{B1, F}+ 2~6
(
4µ21 + 4µ22 + 12µ23 − 1
)
H2 + 4~8µ2H,
[[B1, F ], F ] = 64~2B2FH
2 − 32~2{A1, F}H2 + 32~2{A2, F}H2 − 128~4A1H
3
+ 128~4A2H
3 + 128~4B2H
3 − 16~4
(
3− 4µ22
)
B1H
2 − 8~2{B1, F}H
+ 16~6
(
1− 4µ22
)
H3,
[[B1, F ], B1] = 32~2{A1, B1}H2 − 64~2B1A2H
2 − 32~2{B1, B2}H2 + 128~4A1H
3
− 128~4A2H
3 − 128~4B2H
3 + 16~4
(
3− 4µ23
)
FH2 + 8~2{B1, F}H
− 16~6
(
1− 4µ23
)
H3,
[[A2, F ], F ] = −8~2{A1, F}H − 8~2{A2, F}H + 16~4
(
4µ22 − 3
)
A1H
2 − 32~4A2H
2
+ 2~6
(
16µ42 + 16
(
µ23 − 1
)
µ22 − 12µ23 + 4µ21
(
4µ22 − 3
)
− 1
)
H2 + 2~2{B1, F}
+ 4~2F 2 − 2~4
(
4µ21 + 12µ22 + 4µ23 − 5
)
FH + 4~4
(
3− 4µ22
)
B1H − 4~6µ2F
+ 4~8µ2
(
4µ22 − 3
)
H,
[[F,A2], A2] = −1
2
~6
(
16µ42 + 16
(
µ23 − 1
)
µ22 + 4µ21
(
4µ22 − 1
)
− 3
(
4µ23 + 1
))
H
− 16~2A1A2H + 4~2A2B1 + 4~2{A2, F}+ 4~4
(
3− 4µ22
)
A1H
− 2~4
(
4µ21 + 4µ22 + 4µ23 + 1
)
A2H + 2~4
(
2µ21 + 2µ22 − 3
)
F
+ ~4
(
4µ22 − 3
)
B1 − 4~6µ2A2 + ~8µ2
(
3− 4µ22
)
,
[[B2, B1], B1] = 2~6
(
16µ43 − 16µ23 + 4µ21
(
4µ23 − 3
)
+ 4µ22
(
4µ23 − 3
)
− 1
)
H2 − 32~4B2H
2
+ 2~2{B1, F} − 2~4
(
4µ21 + 4µ22 + 12µ23 − 5
)
B1H + 4~2B2
1
+ 4~4
(
3− 4µ23
)
FH − 4~6µ2B1 + 4µ2~8
(
4µ23 − 3
)
H − 8~2{A1, B1}H
− 8~2{B1, B2}H + 16~4
(
4µ23 − 3
)
A1H
2,
[[B2, B1], B2] =
1
2
~6
(
16µ43 − 16µ23 + 4µ22
(
4µ23 − 3
)
+ 4µ21
(
4µ23 − 1
)
− 3
)
H + 16~2A1B2H
− 4~2{B1, B2}+ 4~4
(
4µ23 − 3
)
A1H + 2~4
(
4µ21 + 4µ22 + 4µ23 + 1
)
B2H
− 2~4
(
2µ21 + 2µ23 − 3
)
B1 − 4~2B2F + ~4
(
3− 4µ23
)
F + 4~6µ2B2
+ µ2~8
(
4µ23 − 3
)
,
[A1, [A1, F ]] =
(
16~2B2H − 2~4
(
4µ21 + 12µ22 + 4µ23 − 5
)
H − 4~6µ2
)
A1 − 16~2HA2
1
+ 4~2{A1, F}+ ~4
(
4µ21 + 4µ22 + 4µ23 − 6
)
F + 4~6µ2B2
+ ~6
(
1− 2µ22
(
4µ21 + 4µ22 + 4µ23 − 5
))
H + 2~4
(
4µ21 + 4µ22 + 4µ23 − 5
)
B2H
+ 2~8µ2
(
1− 2µ22
)
,
[F, [A1, F ]] = −2~6
(
4
(
4µ22 − 3
)
µ21 − 12µ23 + 8µ22
(
2µ22 + 2µ23 − 3
)
+ 1
)
H2
−
(
16~2B2H − 2~4
(
4µ21 + 12µ22 + 4µ23 − 5
)
H − 4~6µ2
)
F − 4~2F 2
+ 16~2H{A1, F}+ 16~4
(
5− 4µ22
)
H2A1 + 4~8µ2
(
3− 4µ22
)
H − 32~4B2H
2.
Eigenvalues for the Nondegenerate Three-Dimensional Kepler–Coulomb Potential 11
References
[1] Kalnins E.G., Kress J.M., Miller W. Jr., Nondegenerate three-dimensional complex Euclidean superinte-
grable systems and algebraic varieties, J. Math. Phys. 48 (2007), 113518, 26 pages, arXiv:0708.3044.
[2] Kalnins E.G., Kress J.M., Miller W. Jr., Fine structure for 3D second-order superintegrable systems: three-
parameter potentials, J. Phys. A: Math. Theor. 40 (2007), 5875–5892.
[3] Verrier P.E., Evans N.W., A new superintegrable Hamiltonian, J. Math. Phys. 49 (2008), 022902, 8 pages,
arXiv:0712.3677.
[4] Kalnins E.G., Williams G.C., Miller W. Jr., Pogosyan G.S., Superintegrability in three-dimensional Eu-
clidean space, J. Math. Phys. 40 (1999), 708–725.
[5] Daskaloyannis C., Quadratic Poisson algebras of two-dimensional classical superintegrable systems and
quadratic associative algebras of quantum superintegrable systems, J. Math. Phys. 42 (2001), 1100–1119,
math-ph/0003017.
[6] Tanoudis Y., Daskaloyannis C., The algebra of the quantum nondegenerate three-dimensional Kepler–
Coulomb potential, in Proceedings of the XIIIth Conference “Symmetries in Physics” (in Memory of Pro-
fessor Yurii Fedorovich Smirnov) (July 2009, Dubna), to appear.
[7] Jacobson N., General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 509–
530.
Lister W.G., A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952), 217–242.
[8] Daskaloyannis C., Ypsilantis K., Unified treatment and classification of superintegrable systems with inte-
grals quadratic in momenta on a two dimensional manifold, J. Math. Phys. 47 (2006), 042904, 38 pages,
math-ph/0412055.
[9] Daskaloyannis C., Ypsilantis K., Quantum superintegrable systems with quadratic integrals on a two di-
mensional manifold, J. Math. Phys. 48 (2007), 072108, 22 pages, math-ph/0607058.
[10] Tanoudis Y., Daskaloyannis C., Quadratic algebras for three-dimensional nondegenerate superintegrable
systems with quadratic integrals of motion, Contribution at the XXVII Colloquium on Group Theoretical
Methods in Physics (August 2008, Yerevan, Armenia), arXiv:0902.0130.
Daskaloyannis C., Tanoudis Y., Quadratic algebras for three-dimensional superintegrable systems, Phys.
Atomic Nuclei 73 (2010), 214–221.
[11] Marquette I., Winternitz P., Polynomial Poisson algebras for classical superintegrable systems with a third-
order integral of motion, J. Math. Phys. 48 (2007), 012902, 16 pages, Erratum, J. Math. Phys. 49 (2008),
019901, math-ph/0608021.
[12] Marquette I., Winternitz P., Superintegrable systems with third-order integrals of motion, J. Phys. A: Math.
Theor. 41 (2008), 304031, 10 pages, arXiv:0711.4783.
[13] Marquette I., Superintegrability with third order integrals of motion, cubic algebras, and supersymmet-
ric quantum mechanics. I. Rational function potentials, J. Math. Phys. 50 (2009), 012101, 23 pages,
arXiv:0807.2858.
[14] Marquette I., Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric
quantum mechanics. II. Painlevé transcendent potentials, J. Math. Phys. 50 (2009), 095202, 18 pages,
arXiv:0811.1568.
[15] Marquette I., Supersymmetry as a method of obtaining new superintegrable systems with higher order
integrals of motion, J. Math. Phys. 50 (2009), 122102, 10 pages, arXiv:0908.1246.
[16] Marquette I., Superintegrability and higher order polynomial algebras, J. Phys. A: Math. Gen. 43 (2010),
135203, 15 pages, arXiv:0908.4399.
[17] Quesne C., Quadratic algebra approach to an exactly solvable position-dependent mass Schrödinger equation
in two dimensions, SIGMA 3 (2007), 067, 14 pages, arXiv:0705.2577.
[18] Marquette I., Generalized MICZ-Kepler system, duality, polynomial, and deformed oscillator algebras,
J. Math. Phys. 51 (2010), 102105, 10 pages, arXiv:1004.4579.
http://dx.doi.org/10.1063/1.2817821
http://arxiv.org/abs/0708.3044
http://dx.doi.org/10.1088/1751-8113/40/22/008
http://dx.doi.org/10.1063/1.2840465
http://arxiv.org/abs/0712.3677
http://dx.doi.org/10.1063/1.532699
http://dx.doi.org/10.1063/1.1348026
http://arxiv.org/abs/math-ph/0003017
http://dx.doi.org/10.2307/1990612
http://dx.doi.org/10.2307/1990753
http://dx.doi.org/10.1063/1.2192967
http://arxiv.org/abs/math-ph/0412055
http://dx.doi.org/10.1063/1.2746132
http://arxiv.org/abs/math-ph/0607058
http://arxiv.org/abs/0902.0130
http://dx.doi.org/10.1134/S106377881002002X
http://dx.doi.org/10.1134/S106377881002002X
http://dx.doi.org/10.1063/1.2399359
http://dx.doi.org/10.1063/1.2831929
http://arxiv.org/abs/math-ph/0608021
http://dx.doi.org/10.1088/1751-8113/41/30/304031
http://dx.doi.org/10.1088/1751-8113/41/30/304031
http://arxiv.org/abs/0711.4783
http://dx.doi.org/10.1063/1.3013804
http://arxiv.org/abs/0807.2858
http://dx.doi.org/10.1063/1.3096708
http://arxiv.org/abs/0811.1568
http://dx.doi.org/10.1063/1.3272003
http://arxiv.org/abs/0908.1246
http://dx.doi.org/10.1088/1751-8113/43/13/135203
http://arxiv.org/abs/0908.4399
http://dx.doi.org/10.3842/SIGMA.2007.067
http://arxiv.org/abs/0705.2577
http://dx.doi.org/10.1063/1.3496900
http://arxiv.org/abs/1004.4579
1 Introduction
2 Quadratic algebra for two-dimensional quantum superintegrable systems with quadratic integrals
3 Quadratic algebra for the nondegenerate Kepler-Coulomb system
4 Calculation of the energy eigenvalues
5 Discussion
A Appendix: Ternary quadratic algebra
References
|