Curved Casimir Operators and the BGG Machinery

We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential operator on arbitrary parabolic geometries. We study some properties of the resulting invariant operators and compute their action on v...

Full description

Saved in:
Bibliographic Details
Date:2007
Main Authors: Cap, A., Soucek, V.
Format: Article
Language:English
Published: Інститут математики НАН України 2007
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147189
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Curved Casimir Operators and the BGG Machinery / A. Cap, V. Soucek // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential operator on arbitrary parabolic geometries. We study some properties of the resulting invariant operators and compute their action on various special types of natural bundles. As a first application, we give a very general construction of splitting operators for parabolic geometries. Then we discuss the curved Casimir operators on differential forms with values in a tractor bundle, which nicely relates to the machinery of BGG sequences. This also gives a nice interpretation of the resolution of a finite dimensional representation by (spaces of smooth vectors in) principal series representations provided by a BGG sequence.