Curved Casimir Operators and the BGG Machinery
We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential operator on arbitrary parabolic geometries. We study some properties of the resulting invariant operators and compute their action on v...
Saved in:
Date: | 2007 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2007
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147189 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Curved Casimir Operators and the BGG Machinery / A. Cap, V. Soucek // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential operator on arbitrary parabolic geometries. We study some properties of the resulting invariant operators and compute their action on various special types of natural bundles. As a first application, we give a very general construction of splitting operators for parabolic geometries. Then we discuss the curved Casimir operators on differential forms with values in a tractor bundle, which nicely relates to the machinery of BGG sequences. This also gives a nice interpretation of the resolution of a finite dimensional representation by (spaces of smooth vectors in) principal series representations provided by a BGG sequence. |
---|