Miscellaneous Applications of Quons

This paper deals with quon algebras or deformed oscillator algebras, for which the deformation parameter is a root of unity. We motivate why such algebras are interesting for fractional supersymmetric quantum mechanics, angular momentum theory and quantum information. More precisely, quon algebras a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
1. Verfasser: Kibler, M.R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147191
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Miscellaneous Applications of Quons / M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 71 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147191
record_format dspace
spelling irk-123456789-1471912019-02-14T01:27:21Z Miscellaneous Applications of Quons Kibler, M.R. This paper deals with quon algebras or deformed oscillator algebras, for which the deformation parameter is a root of unity. We motivate why such algebras are interesting for fractional supersymmetric quantum mechanics, angular momentum theory and quantum information. More precisely, quon algebras are used for (i) a realization of a generalized Weyl-Heisenberg algebra from which it is possible to associate a fractional supersymmetric dynamical system, (ii) a polar decomposition of SU2 and (iii) a construction of mutually unbiased bases in Hilbert spaces of prime dimension. We also briefly discuss (symmetric informationally complete) positive operator valued measures in the spirit of (iii). 2007 Article Miscellaneous Applications of Quons / M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 71 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R50; 81R05; 81R10; 81R15 http://dspace.nbuv.gov.ua/handle/123456789/147191 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper deals with quon algebras or deformed oscillator algebras, for which the deformation parameter is a root of unity. We motivate why such algebras are interesting for fractional supersymmetric quantum mechanics, angular momentum theory and quantum information. More precisely, quon algebras are used for (i) a realization of a generalized Weyl-Heisenberg algebra from which it is possible to associate a fractional supersymmetric dynamical system, (ii) a polar decomposition of SU2 and (iii) a construction of mutually unbiased bases in Hilbert spaces of prime dimension. We also briefly discuss (symmetric informationally complete) positive operator valued measures in the spirit of (iii).
format Article
author Kibler, M.R.
spellingShingle Kibler, M.R.
Miscellaneous Applications of Quons
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kibler, M.R.
author_sort Kibler, M.R.
title Miscellaneous Applications of Quons
title_short Miscellaneous Applications of Quons
title_full Miscellaneous Applications of Quons
title_fullStr Miscellaneous Applications of Quons
title_full_unstemmed Miscellaneous Applications of Quons
title_sort miscellaneous applications of quons
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147191
citation_txt Miscellaneous Applications of Quons / M.R. Kibler // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 71 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kiblermr miscellaneousapplicationsofquons
first_indexed 2025-07-11T01:34:54Z
last_indexed 2025-07-11T01:34:54Z
_version_ 1837312461780287488
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 3 (2007), 092, 14 pages Miscellaneous Applications of Quons? Maurice R. KIBLER Université de Lyon, Institut de Physique Nucléaire, Université Lyon 1 and CNRS/IN2P3, 43 bd du 11 novembre 1918, F-69622 Villeurbanne Cedex, France E-mail: m.kibler@ipnl.in2p3.fr Received July 23, 2007, in final form September 21, 2007; Published online September 24, 2007 Original article is available at http://www.emis.de/journals/SIGMA/2007/092/ Abstract. This paper deals with quon algebras or deformed oscillator algebras, for which the deformation parameter is a root of unity. We motivate why such algebras are interesting for fractional supersymmetric quantum mechanics, angular momentum theory and quantum information. More precisely, quon algebras are used for (i) a realization of a generalized Weyl–Heisenberg algebra from which it is possible to associate a fractional supersymmetric dynamical system, (ii) a polar decomposition of SU2 and (iii) a construction of mutually unbiased bases in Hilbert spaces of prime dimension. We also briefly discuss (symmetric informationally complete) positive operator valued measures in the spirit of (iii). Key words: quon algebra; q-deformed oscillator algebra; fractional supersymmetric quantum mechanics; polar decompostion of SU2; mutually unbiased bases; positive operator valued measures 2000 Mathematics Subject Classification: 81R50; 81R05; 81R10; 81R15 1 Introduction Deformed oscillator algebras are spanned by generalized bosons or fermions which are often referred to as quons, q-bosons, parafermions (parabosons) or k-fermions [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Such objects are of paramount importance for generating q-deformed Lie algebras. In this respect, quons can be used to derive q-deformed Lie (super)algebras associated with q-deformed models in atomic, molecular and condensed matter physics as well as in nuclear and particle physics. In recent years, the use of deformed oscillator algebras proved to be useful for many appli- cations in quantum mechanics. For instance, one- and two-parameter deformations of oscillator algebras and Lie algebras were applied to intermediate statistics [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and to molecular and nuclear physics [24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Along this vein, it was shown recently that q-bosons play a central role for quantum integrable systems [34]. It is the aim of the present work to motivate why quons, when q is a kth primitive root of unity, are interesting for fractional supersymmetric quantum mechanics of order k and for the determination of mutually unbiased bases used in quantum information. This paper takes it origin in an invited talk at the 3rd International Microconference “Analytic and Algebraic Methods in Physics”. It has review character although it exhibits some original aspects partly presented in schools and conferences. The organisation of the paper is as follows. Section 2 is devoted to some generalities on quon algebras and k-fermions which are objects interpolating between bosons and fermions. Section 3 deals with fractional supersymmetric quantum mechanics of order k. In Section 4 we show how to construct the Lie algebra of SU2 from two quon algebras. This leads to a polar ?This paper is a contribution to the Proceedings of the 3-rd Microconference “Analytic and Algebraic Me- thods III”. The full collection is available at http://www.emis.de/journals/SIGMA/Prague2007.html mailto:m.kibler@ipnl.in2p3.fr http://www.emis.de/journals/SIGMA/2007/092/ http://www.emis.de/journals/SIGMA/Prague2007.html 2 M.R. Kibler decomposition which is used in Section 5 for generating mutually unbiased bases (MUBs) in d-dimensional Hilbert spaces with d prime. The approach followed for MUBs is also suggested for deriving certain positive operator valued measures (POVMs) in finite-dimensional Hilbert spaces. Regarding the notations, let us mention that δa,b stands for the Kronecker symbol for a and b, the bar indicates complex conjugation, A† denotes the adjoint of the operator A, I is the identity operator, and [A,B]q := AB − qAB so that [A,B]1 (respectively [A,B]−1) is the commutator [A,B] (respectively anticommutator {A,B}) of the operators A and B. 2 Quons and k-fermions We first define a quon algebra or q-deformed oscillator algebra for q a root of unity. Definition 1. The three operators a−, a+ and Na such that [a−, a+]q = I, [Na, a±] = ±a±, ak ± = 0, N † a = Na, (1) where q := exp(2πi/k), k ∈ N \ {0, 1}, (2) define a quon algebra or q-deformed oscillator algebra denoted as Aq(a−, a+, Na). The opera- tors a− and a+ are referred to as quon operators. The operators a−, a+ and Na are called annihilation, creation and number operators, respectively. Definition 1 differs from the one by Arik and Coon [1] in the sense that we take q ∈ S1 instead of 0 < q < 1. For k = 2 (respectively k → ∞), the quon operators coincide with the ordinary fermion (respectively boson) operators. For arbitrary k, the quon operators a− and a+ are not connected via Hermitian conjugation. It is only for k = 2 or k →∞ that we may take a+ = a†−. In general (i.e., for k 6= 2 or k 6→ ∞), we have a†± 6= a∓. Therefore, it is natural to consider the so-called k-fermionic algebra Σq with the generators a−, a+, a+ + := a†+, a+ − := a†−, and Na [9, 10]. The defining relations for Σq correspond to the ones of Aq(a−, a+, Na) and Aq̄(a+ +, a+ −, Na) complemented by the relation a−a+ + − q− 1 2 a+ +a− = 0 ⇔ a+a+ − − q 1 2 a+ −a+ = 0. Observe that for k = 2 or k → ∞, the latter relation corresponds to an identity. The opera- tors a−, a+, a+ + and a+ − are called k-fermion operators and we also use the terminology k-fermions in analogy with fermions and bosons [9]. They clearly interpolate between fermions and bosons. In a way similar to the one used for ordinary fermions and ordinary bosons, we can define the coherence factor g(m) for an assembly of m k-fermions. Such a definition reads g(m) := 〈 ( a+ − )m (a−)m〉 〈a+ −a−〉m , where 〈X〉 := (z|X|z) (z|z) , stands for the average value of the operator X on the k-fermionic coherent state |z) defined in [10]. A simple calculation in Σq shows that∣∣g(m) ∣∣ = { 0 for m > k − 1, 1 for m ≤ k − 1. (3) Miscellaneous Applications of Quons 3 From equation (3), we see once again that k = 2 corresponds to ordinary fermions and k →∞ to ordinary bosons. Equation (3) is in agreement with a generalized Pauli exclusion principle according to which, for a many-particle system, a k-fermionic state (corresponding to a spin 1/k) cannot be occupied by more than k − 1 identical k-fermions [9]. To close this section, let us mention that the k-fermions introduced in [9, 10] share some common properties with the parafermions of order k− 1 discussed in [35, 36, 37, 38, 39, 40, 41]. Indeed, a parafermionic algebra of order k−1 corresponds to a fractional supersymmetric algebra of order k. 3 Quons and fractional supersymmetry 3.1 Fractional supersymmetric system Following Rubakov and Spiridonov [35], who initially considered the case k = 3, we start with the definition of a fractional supersymmetric system of order k [42]. Definition 2. For fixed k in N \ {0, 1}, a fractional supersymmetric quantum system of or- der k, or k-SUSY system in short, is a doublet (H,Q)k of linear operators H and Q, acting on a separable Hilbert space H, such that H is self-adjoint and Q− := Q, Q+ := Q†, Qk ± = 0, k−1∑ s=0 Qk−1−s − Q+Qs − = Qk−2 − H, [H,Q±] = 0. The operators H and Q± are called the Hamiltonian and the supercharges of the k-SUSY system. By way of illustration, let us show that the case k = 2 corresponds to Witten’s approach of ordinary supersymmetric quantum mechanics. According to Witten [43], a triplet of linear operators (H,P, S) of linear operators H, P and S, with P bounded, defines a supersymmetric quantum system if S = S†, H = S2, {S, P} = 0, P 2 = I, P = P †. By putting Q± = 1 2 S(1± P ), we get the relations Q+ = Q† −, Q2 ± = 0, {Q−, Q+} = H, [H,Q±] = 0, H = H†, which correspond to a (H,Q)2 system or ordinary supersymmetric system with a Z2-grading involving fermionic and bosonic states. Going back to the general case, the doublet (H,Q)k, with arbitrary k, defines a k-SUSY system, with a Zk-grading, for which the Hamiltonian H and the two (nonindependent) super- charges Q± are up to now formal operators. A natural question arises: How to find realizations of H and Q±? In this respect, the definition of a generalized Weyl–Heisenberg algebra is essen- tial [42]. 3.2 Generalized Weyl–Heisenberg algebra Definition 3. Let Wk(f), where f = {fs : s = 0, 1, . . . , k − 1} is a set of k functions, be the algebra spanned by the four linear operators X+, X−, N and K acting on the space H and satisfying X+ = X† −, N = N †, KK† = K†K = I, Kk = I (4) 4 M.R. Kibler and [X−, X+] = k−1∑ s=0 fs(N)Πs, Πs = 1 k k−1∑ t=0 q−stKt, (5) [N,X±] = ±X±, [K, X±]q±1 = 0, [K, N ] = 0, (6) where q := exp(2πi/k) and k ∈ N \ {0, 1}. It should be realized that, for fixed k, equations (4)–(6) define indeed a family of generalized Weyl–Heisenberg algebras Wk(f). The various members of the family are distinguished by the various sets f . It is possible to find a realization of Wk(f) in terms of one pair (f−, f+) of k-fermions with [f−, f+]q = I, fk ± = 0 and k pairs (b(s)−, b(s)+) of generalized bosons with [b(s)−, b(s)+] = fs(N), s = 0, 1, . . . , k − 1, such that any k-fermion operator commutes with any generalized boson operator. Indeed, by introducing b± = k−1∑ s=0 b(s)±Πs one can take X− = b− ( f− + fk−1 + [k − 1]q! ) , X+ = b+ ( f− + fk−1 + [k − 1]q! )k−1 , K = [f−, f+], where ∀n ∈ N∗ : [n]q := 1− qn 1− q , [n]q! := [1]q [2]q · · · [n]q . 3.3 Realizations of k-SUSY systems As an important result, the following proposition shows that, for fixed k and given f , it is possible to associate a k-SUSY system, characterized by a specific doublet (H,Q)k, with the algebra Wk(f). Proposition 1. For a fixed value of k and a given set f , the relations Q− := Q = X−(1−Π1), Q+ := Q† = X+(1−Π0) and H = (k − 1)X+X− − k∑ s=3 s−1∑ t=2 (t− 1)ft(N − s + t)Πs − k−1∑ s=1 k−1∑ t=s (t− k)ft(N − s + t)Πs generate a (H,Q)k system associated with the generalized Weyl–Heisenberg algebra Wk(f). In addition, the Hamiltonian H can be decomposed as H = k−1∑ s=0 Hk−sΠk−s, Miscellaneous Applications of Quons 5 where the various operators Hk−s are isospectral Hamiltonians. Each Hamiltonian Hk−s acts on a subspace Hk−s of the Zk-graded Hilbert space H = k−1⊕ s=0 Hk−s, with Hk ≡ H0. In the light of Proposition 1, we foresee that a k-SUSY system with a Zk-grading can be considered as a superposition of k − 1 ordinary supersymmetric subsystems (corresponding to k = 2) with a Z2-grading [42]. As an example, we consider the case of the Z3-graded supersymmetric oscillator corresponding to k = 3 ⇒ q = exp ( 2πi 3 ) with fs(N) = 1, s = 0, 1, 2, ⇒ [X−, X+] = I. The corresponding algebra W3(f) can be represented by X− = b− ( f− + f2 + [2]q! ) , X+ = b+ ( f− + f2 + [2]q! )2 , K = f−f+ − f+f−, N = b+b−, in terms of 3-fermions (f−, f+) and ordinary bosons (b−, b+). The system (H,Q)3 associated with W3(f) is defined by Q− := Q = X−(Π0 + Π2), Q+ := Q† = X+(Π1 + Π2) and H = (2X+X− − 1) Π3 + (2X+X− + 1) Π2 + (2X+X− + 3) Π1, where Π0 = 1 3 ( 1 + q3K + q3K2 ) , Π1 = 1 3 ( 1 + q1K + q2K2 ) , Π2 = 1 3 ( 1 + q2K + q1K2 ) , with Π3 ≡ Π0. In terms of 3-fermions and ordinary bosons, we have Q− = b−f+ ( f2 − − qf+ ) , Q+ = b+ ( f− − qf2 + ) f− and H = 2b+b− − 1 + 2(1− 2q)f+f− + 2(1 + 2q)f+f−f+f−. Finally, the energy spectrum of H reads spectrum(H) = 1⊕ 2⊕ 3⊕ 3⊕ · · · , 6 M.R. Kibler a symbolic writing to mean that it contains equally spaced levels with a nondegenerate ground state (denoted as 1), a doubly degenerate first excited state (denoted as 2) and an infinite sequence of triply degenerate excited states (denoted as 3). Other sets f lead to other fractional supersymmetric dynamical systems [44]. For instance, the case fs(N) = aN + b, s = 0, 1, . . . , k − 1, a ∈ R, b ∈ R corresponds to translational shape-invariant systems as for example the harmonic oscillator system (for a = 0 and b > 0), the Morse system (for a < 0 and b > 0) and the Pöschl–Teller system (for a > 0 and b > 0). Furthermore, the case fs(N) = fs, s = 0, 1, . . . , k − 1 corresponds to cyclic shape-invariant systems like the Calogero–Vasiliev system for k = 2, f0 = 1 + c and f1 = 1− c with c ∈ R. 4 Quons and polar decomposition The approach presented in this section is a review based on the original developments given in [45, 46, 47, 48, 49]. Here, we shall limit ourselves to those aspects which are relevant for Section 5. We start with two commuting quon algebras Aq(a−, a+, Na) ≡ Aq(a) with a = x, y cor- responding to the same value of the deformation parameter q. Their generators satisfy equa- tions (1) and (2) with a = x, y and [X, Y ] = 0 for any X in Aq(x) and any Y in Aq(y). Then, let us look for Hilbertian representations of Aq(x) and Aq(y) on k-dimensional Hilbert spaces Fx and Fy spanned by the orthonormal bases {|n1) : n1 = 0, 1, . . . , k − 1} and {|n2) : n2 = 0, 1, . . . , k − 1}, respectively. We easily obtain the representations defined by x+|n1) = |n1 + 1), x+|k − 1) = 0, x−|n1) = [n1]q |n1 − 1), x−|0) = 0, Nx|n1) = n1|n1) and y+|n2) = [n2 + 1]q |n2 + 1), y+|k − 1) = 0, y−|n2) = |n2 − 1), y−|0) = 0, Ny|n2) = n2|n2), for Aq(x) and Aq(y), respectively. The cornerstone of this approach is to define the two linear operators h := √ Nx (Ny + 1), vra := sxsy, with sx = qa(Nx+Ny)/2x+ + eiφr/2 1 [k − 1]q! (x−)k−1, sy = y−q−a(Nx−Ny)/2 + eiφr/2 1 [k − 1]q! (y+)k−1, where a ∈ R, φr = π(k − 1)r, r ∈ R. Miscellaneous Applications of Quons 7 The operators h and vra act on the states |n1, n2) = |n1)⊗ |n2) of the k2-dimensional space Fx ⊗Fy. We now adapt the trick used by Schwinger in his approach to angular momentum via a coupled pair of harmonic oscillators. This can be done by introducing two new quantum numbers J and M defined by J := 1 2 (n1 + n2) , M := 1 2 (n1 − n2) ⇒ |JM〉 := |J + M,J −M) = |n1, n2) Note that j := 1 2 (k − 1) is an admissible value for J . Then, let us consider the (k-dimensional) subspace ε(j) of the (k2-dimensional) space Fx ⊗Fy spanned by the basis S = {|j,m〉 : m = −j,−j + 1, . . . , j}. We guess that ε(j) is a space of constant angular momentum j. As a matter of fact, we can check that ε(j) is stable under h and vra. Moreover, by defining the operators j± and jz through j+ := hvra, j− := v†rah, jz := 1 2 (h2 − v†rah 2vra), we obtain [jz, j±] = ±j±, [j+, j−] = 2jz, for any r in R and any a in R. The latter commutation relations correspond to the Lie algebra of SU2. We have here a polar decomposition of j±. Thus, from two q-deformed oscillator algebras we obtained a polar decomposition of the nondeformed Lie algebra of SU2. In addition, the complete set of commuting operators {j2, jz}, where j2 is the Casimir of SU2, can be replaced by another complete set of commuting operators, namely {j2, vra}, for which we have the following result. It is to be noted that the operators z, defined through z|j,m〉 = qj−m|j,m〉, and vra can be used to generate the Pauli group P2j+1, a subgroup of order (2j+1)3 of the linear group GL(2j+1, C) [49]. Proposition 2. For fixed a, r and j, the common orthonormalized eigenvectors of the commu- ting operators j2 and vra can be taken in the form |jα; ra〉 = 1√ 2j + 1 j∑ m=−j q(j+m)(j−m+1)a/2−jmr+(j+m)α|j,m〉, α = 0, 1, . . . , 2j, (7) or alternatively |jα; ra〉 ≡ |aα〉 = 1√ d d−1∑ k=0 q(d−k−1)(k+1)a/2+j(k−j)r−(k+1)α|k〉, α = 0, 1, . . . , 2j. (8) after introducing k := j −m, d := 2j + 1, and |k〉 := |j,m〉. 8 M.R. Kibler In other words, for fixed a, r and j, the space ε(j) can be spanned by the basis Bra = {|jα; ra〉 : α = 0, 1, . . . , 2j}. The replacement of the spherical basis S, adapted to the chain SO3 ⊃ SO2 and to the set {j2, jz}, by the basis Bra, adapted to the chain SO3 ⊃ Z2j+1 and to the set {j2, vra}, leads to a new form of the Wigner–Racah algebra of SU2 [46]. Note that the notation in (8) is particularly appropriate for quantum information theory (the qudits |0〉, |1〉, . . . , |d− 1〉 in the expansion (8) constitute the computational or canonical basis of a d-dimensional Hilbert space). We shall see in Section 5 how the parameter a can be chosen in such a way to generate MUBs. 5 MUBs and POVMs 5.1 MUBs We are now turn to the application of Proposition 2 to the determination of MUBs in a finite- dimensional Hilbert space. Let us recall that two orthonormalized bases {|aα〉 : α = 0, 1, . . ., d − 1} and {|bβ〉 : β = 0, 1, . . . , d − 1} of the d-dimensional Hilbert space Cd, with an inner product denoted as 〈 | 〉, are said to be mutually unbiased if |〈aα|bβ〉| = 1/ √ d for a 6= b. In other words, we have |〈aα|bβ〉| = δα,βδa,b + 1√ d (1− δa,b). We know that the number of MUBs in Cd is lesser or equal to d + 1 and that the limit d + 1 is reached when d is a power of a prime [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]. Let us suppose that d is the power of a prime. Then, we identify Cd with the space ε(j) corresponding to the angular momentum j = (d− 1)/2. We begin by introducing the operators Πaα := |aα〉〈aα|, a = 0, 1, . . . , 2j + 1, α = 0, 1, . . . , 2j. (9) Each of the operators Πaα acting on Cd can be considered as a vector in Cd2 endowed with the Hilbert–Schmidt inner product. Thus, Πaα can be developed as Πaα = j∑ m=−j j∑ m′=−j gmm′(aα)Emm′ , (10) where Emm′ = |j,m〉〈j, m′|. (11) The calculation of Tr ( Π† aαΠbβ ) leads to j∑ m=−j j∑ m′=−j gmm′(aα)gmm′(bβ) = δα,βδa,b + 1 d (1− δa,b). By defining the vectors s(aα) := (s1(aα), s2(aα), . . . , sd2(aα)) with si(aα) := gmm′(aα), i = (j + m)(2j + 1) + j + m′ + 1, Miscellaneous Applications of Quons 9 we get s(aα) · s(bβ) = δα,βδa,b + 1 d (1− δa,b), (12) where s(aα) · s(bβ) stands for the usual inner product ∑d2 i=1 si(aα)si(bβ) in Cd2 . Note that the relation (12) is independent of the basis chosen for developing the operators Πaα. As a result, the determination of the d(d + 1) vectors |aα〉 in Cd, for d a power of a prime, amounts to find d(d + 1) operators Πaα acting on Cd or to find d(d + 1) vectors s(aα) in Cd2 satisfying (12). We may now use Proposition 2 derived from the quonic approach of Section 4 to obtain the following result. Proposition 3. For fixed r and j = (d− 1)/2 with d prime, the d2 vectors |aα〉 := |jα; ra〉, a = 0, 1, . . . , d− 1, α = 0, 1, . . . , d− 1, where |jα; ra〉 is given by (7) or (8) with q := exp(2πi/d), together with the d vectors |aα〉 := |j,m〉, a = d, α = j + m, m = −j,−j + 1, . . . , j, constitute a complete set of d + 1 MUBs in Cd. Proof. From (9), (10) and (11), we get gmm′(aα) = 〈j, m|aα〉〈aα|j, m′〉. Let us first consider the case a = 0, 1, . . . , d− 1. Equation (7) leads to 〈j,m|aα〉 = 1√ 2j + 1 q(j+m)(j−m+1)a/2−jmr+(j+m)α. (13) The introduction of (13) in s(aα) · s(bβ) = j∑ m=−j j∑ m′=−j gmm′(aα)gmm′(bβ) yields s(aα) · s(bβ) = 1 (2j + 1)2 j∑ m=−j j∑ m′=−j q(m−m′)[(m+m′+1)(a−b)/2−(α−β)] (14) for a, b = 0, 1, . . . , d−1. By putting k = j +m and ` = j +m′, equation (14) can be rewritten as s(aα) · s(bβ) = 1 d2 d−1∑ k=0 d−1∑ `=0 eiπ(k−`)[(k+`−d)(a−b)−2(α−β)]/d. In terms of the generalized quadratic Gauss sums [60] S(u, v, d) := d−1∑ k=0 eiπ(uk2+vk)/d, we obtain s(aα) · s(bβ) = 1 d2 |S(u, v, d)|2, u = a− b, v = 2(β − α) + d(b− a). 10 M.R. Kibler The calculation of S(u, v, d), see [49] and [60], leads to s(aα) · s(bβ) = δα,βδa,b + 1 d (1− δa,b), a, b = 0, 1, . . . , d− 1, α = 0, 1, . . . , d− 1, which proves that the d bases Bra := {|aα〉 : α = 0, 1, . . . , d − 1} with a = 0, 1, . . . , d − 1 are mutually unbiased. It is clear from (13) that the bases Bra with a = 0, 1, . . . , d − 1 and the basis Bd := {|dα〉 : α = 0, 1, . . . , d − 1} are mutually unbiased. This completes the proof of Proposition 3. � 5.2 POVMs An approach similar to the one developed for MUBs can be set up for symmetric informationally complete (SIC) POVMs [61, 62, 63, 64, 65, 66, 67, 68]. We shall briefly discuss the starting point for a study of SIC-POVMs along the lines of Section 5.1 (see [69] for more details). A SIC-POVM in dimension d can be defined as a set of d2 nonnegative operators Px acting on Cd and satisfying Tr (PxPy) = 1 d + 1 (dδx,y + 1), 1 d d2∑ x=1 Px = I, Px = |Φx〉〈Φx|. (15) Let Px = j∑ m=−j j∑ m′=−j fmm′(aα)Emm′ be the development of Px in terms of the operators Emm′ and let r(x) := (r1(x), r2(x), . . . , rd2(x)) be the vector in Cd2 of components ri(x) := fmm′(aα), i = (j + m)(2j + 1) + j + m′ + 1, It is immediate to show that r(x) · r(y) = 1 d + 1 (dδx,y + 1), (16) a relation (independent of the basis chosen for developing Px) to be compared with (12). The determination of the d2 operators Px satisfying (15) amounts to find d2 vectors |Φx〉 in Cd or d2 vectors r(x) in Cd2 satisfying (16). The search for solutions of (16) is presently under progress. 6 Open questions To close this paper, we would like to address a few questions which arose during the conference. Possible future developments concern (i) a field theory approach to k-fermions and their relation to anyons, (ii) the classification, in terms of the sets f , of the Weyl–Heisenberg algebras Wk(f) that lead to integrable systems, (iii) the passage from fractional supersymmetric quantum me- chanics to fractional supersymmetric non-Hermitian quantum mechanics, as for example along the lines of PT-symmetric regularizations [70], (iv) the Wigner–Racah algebra of the group SU2 in the {j2, vra} scheme, and (v) the construction of MUBs and SIC-POVMs in an unified way. Miscellaneous Applications of Quons 11 Some comments regarding points (iv) and (v) are in order. The {j2, vra} scheme described in Section 4 constitutes an alternative to the familiar {j2, jz} scheme of angular momentum theory. As a further step, it would be interesting to find differential realizations of the operator vra as well as realizations of the bases Bra on the sphere S2 for j integer and on Fock–Bargmann spaces (in 1 and 2 dimensions) for j integer or half of an odd integer. The preliminary study reported in Section 5 for MUBs and POVMs is based on the replace- ment of |〈aα|bβ〉| = δα,βδa,b + 1√ d (1− δa,b), (17) |〈Φx|Φy〉| = 1√ d + 1 √ dδx,y + 1, (18) corresponding to inner products in Cd, by s(aα) · s(bβ) = δα,βδa,b + 1 d (1− δa,b), (19) r(x) · r(y) = 1 d + 1 (dδx,y + 1) , (20) corresponding to inner products in Cd2 , respectively. We may ask the question: Is it easier to find solutions of (17), (18) than to find solutions of (19), (20)? We do not have any answer. In the case of MUBs, we have a general solution (see Proposition 3) of (19) and thus (17) for d prime in the framework of angular momentum theory. It would be interesting to extend this result for d a power of a prime. In the case of SIC-POVMs, to prove or disprove the conjecture according to which SIC-POMVs exist in any dimension amounts to prove or disprove that (20) has a solution in any dimension. Note. After the submission (July 23, 2007) of the present paper for publication in SIGMA, the author became aware of a preprint dealing with the existence of SIC-POVMs posted (July 20, 2007) on arXiv [71]. The main result in [71] is that SIC-POVMs exist in all dimensions. As a corollary of this result, equation (20) admits solutions in any dimension. Acknowledgements Some parts of the material reported here were worked out in collaboration with Mohammed Daoud, Olivier Albouy, and Michel Planat. The present paper is a contribution to the 3rd International Microconference “Analytic and Algebraic Methods in Physics” (June 2007, Villa Lanna, Prague); the author is very indebted to Miloslav Znojil for organizing the conference and for useful comments; thanks are due to Uwe Günther, Stefan Rauch-Wojciechowski, Artur Sergyeyev, Petr Šulcp, and Pierguilio Tempesta for interesting discussions. This work was also presented at the workshop “Finite Projective Geometries in Quantum Theory” (August 2007, Astronomical Institute, Tatranská Lomnica); the author acknowledges the organizer, Metod Saniga, and the other participants for fruitful interactions. References [1] Arik M., Coon D.D., Hilbert spaces of analytic functions and generalized coherent states, J. Math. Phys. 17 (1976), 524–527. [2] Kuryshkin M.V., Opérateurs quantiques généralisés de création et d’annihilation, Ann. Fond. Louis de Broglie 5 (1980), 111–125. 12 M.R. Kibler [3] Jannussis A.D., Papaloucas L.C., Siafarikas P.D., Eigenfunctions and eigenvalues of the q-differential opera- tors, Hadronic J. 3 (1980), 1622–1632. [4] Biedenharn L.C., The quantum group SUq(2) and a q-analogue of the boson operators, J. Phys. A: Math. Gen. 22 (1989), L873–L878. [5] Sun C.-P., Fu H.-C., The q-deformed boson realisation of the quantum group SU(n)q and its representations, J. Phys. A: Math. Gen. 22 (1989), L983–L986. [6] Macfarlane A.J., On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q, J. Phys. A: Math. Gen. 22 (1989), 4581–4588. [7] Chaturvedi S., Kapoor A.K., Sandhya R., Srinivasan V., Simon R., Generalized commutation relations for a single-mode oscillator, Phys. Rev. A 43 (1991), 4555–4557. [8] Greenberg O.W., Quons, an interpolation between Bose and Fermi oscillators, cond-mat/9301002. [9] Daoud M., Hassouni Y., Kibler M., The k-fermions as objects interpolating between fermions and bosons, in Symmetries in Science X, Editors B. Gruber and M. Ramek, Plenum Press, New York, 1998, 63–67, quant-ph/9710016. [10] Daoud M., Hassouni Y., Kibler M., Generalized supercoherent states, Phys. Atom. Nuclei 61 (1998), 1821– 1824, quant-ph/9804046. [11] Ge M.-L., Su G., The statistical distribution function of the q-deformed harmonic-oscillator, J. Phys. A: Math. Gen. 24 (1991), L721–L723. [12] Mart́ın-Delgado M.A., Planck distribution for a q-boson gas, J. Phys. A: Math. Gen. 24 (1991), L1285– L1291. [13] Lee C.R., Yu J.-P., On q-deformed free-electron gases, Phys. Lett. A 164 (1992), 164–166. [14] Su G., Ge M.-L., Thermodynamic characteristics of the q-deformed ideal Bose-gas, Phys. Lett. A 173 (1993), 17–20. [15] Tuszyński J.A., Rubin J.L, Meyer J., Kibler M., Statistical mechanics of a q-deformed boson gaz, Phys. Lett. A 175 (1993), 173–177. [16] Man’ko V.I., Marmo G., Solimeno S., Zaccaria F., Correlation functions of quantum q-oscillators, Phys. Lett. A 176 (1993), 173–175, hep-th/9303008. [17] Hsu R.-R., Lee C.-R., Statistical distribution of gases which obey q-deformed commutation relations, Phys. Lett. A 180 (1993), 314–316. [18] Granovskii Ya.I., Zhedanov A.S., Production of q-bosons by a classical current – an exactly solvable model, Modern Phys. Lett. A 8 (1993), 1029–1035. [19] Chaichian M., Felipe R.G., Montonen C., Statistics of q-oscillators, quons and relations to fractional statis- tics, J. Phys. A: Math. Gen. 26 (1993), 4017–4034, hep-th/9304111. [20] Gupta R.K., Bach C.T., Rosu H., Planck distribution for a complex q-boson gas, J. Phys. A: Math. Gen. 27 (1994), 1427–1433. [21] R.-Monteiro M.A., Roditi I., Rodrigues L.M.C.S., Gamma-point transition in quantum q-gases, Phys. Lett. A 188 (1994), 11–15. [22] Gong R.-S., Thermodynamic characteristics of the (p, q)-deformed ideal Bose-gas, Phys. Lett. A 199 (1995), 81–85. [23] Daoud M., Kibler M., Statistical-mechanics of qp-bosons in D-dimensions, Phys. Lett. A 206 (1995), 13–17, quant-ph/9512006. [24] Witten E., Gauge-theories, vertex models, and quantum groups, Nuclear Phys. B 330 (1990), 285–346. [25] Iwao S., Knot and conformal field-theory approach in molecular and nuclear-physics, Prog. Theor. Phys. 83 (1990), 363–367. [26] Bonatsos D., Raychev P.P., Roussev R.P., Smirnov Yu.F., Description of rotational molecular-spectra by the quantum algebra SUq(2), Chem. Phys. Lett. 175 (1990), 300–306. [27] Chang Z., Guo H.-Y., Yan H., The q-deformed oscillator model and the vibrational-spectra of diatomic- molecules, Phys. Lett. A 156 (1991), 192–196. [28] Chang Z., Yan H., Diatomic-molecular spectrum in view of quantum group-theory, Phys. Rev. A 44 (1991), 7405–7413. [29] Bonatsos D., Drenska S.B., Raychev P.P., Roussev R.P., Smirnov Yu.F., Description of superdeformed bands by the quantum algebra SUq(2), J. Phys. G: Nucl. Part. Phys. 17 (1991), L67–L73. http://arxiv.org/abs/cond-mat/9301002 http://arxiv.org/abs/quant-ph/9710016 http://arxiv.org/abs/quant-ph/9804046 http://arxiv.org/abs/hep-th/9303008 http://arxiv.org/abs/hep-th/9304111 http://arxiv.org/abs/quant-ph/9512006 Miscellaneous Applications of Quons 13 [30] Bonatsos D., Raychev P.P., Faessler A., Quantum algebraic description of vibrational molecular-spectra, Chem. Phys. Lett. 178 (1991), 221–226. [31] Bonatsos D., Argyres E.N., Raychev P.P., SUq(1,1) description of vibrational molecular-spectra, J. Phys. A: Math. Gen. 24 (1991), L403–L408. [32] Jenkovszky L., Kibler M., Mishchenko A., Two-parameter quantum-deformed dual amplitude, Modern Phys. Lett A 10 (1995), 51–60, hep-th/9407071. [33] Barbier R., Kibler M., Application of a two-parameter quantum algebra to rotational spectroscopy of nuclei, Rep. Math. Phys. 38 (1996), 221–226, nucl-th/9602015. [34] Kundu A., q-boson in quantum integrable systems, SIGMA 3 (2007), 040, 14 pages, nlin.SI/0701030. [35] Rubakov V.A., Spiridonov V.P., Parasupersymmetric quantum-mechanics, Modern Phys. Lett. A 3 (1988), 1337–1347. [36] Beckers J., Debergh N., Parastatistics and supersymmetry in quantum-mechanics, Nuclear Phys. B 340 (1990), 767–776. [37] Debergh N., On parasupersymmetric Hamiltonians and vector-mesons in magnetic-fields, J. Phys. A: Math. Gen. 27 (1994), L213–L217. [38] Khare A., Parasupersymmetry in quantum mechanics, J. Math. Phys. 34 (1993), 1277–1294. [39] Filippov A.T., Isaev A.P., Kurdikov A.B., Paragrassmann extensions of the Virasoro algebra, Internat. J. Modern Phys. A 8 (1993), 4973–5003, hep-th/9212157. [40] Durand S., Fractional superspace formulation of generalized mechanics, Modern Phys. Lett. A 8 (1993), 2323–2334, hep-th/9305130. [41] Klishevich S., Plyushchay T., Supersymmetry of parafermions, Modern Phys. Lett. A 14 (1999), 2739–2752, hep-th/9905149. [42] Daoud M., Kibler M., Fractional supersymmetric quantum mechanics as a set of replicas of ordinary super- symmetric quantum mechanics, Phys. Lett. A 321 (2004), 147–151, math-ph/0312019. [43] Witten E., Dynamical breaking of supersymmetry, Nuclear Phys. B 188 (1981), 513–554. [44] Daoud M., Kibler M.R., Fractional supersymmetry and hierarchy of shape invariant potentials, J. Math. Phys. 47 (2006), 122108, 11 pages, quant-ph/0609017. [45] Kibler M., Daoud M., Variations on a theme of quons: I. A non standard basis for the Wigner–Racah algebra of the group SU(2), Recent Res. Devel. Quantum Chem. 2 (2001), 91–99, physics/9712034. [46] Kibler M.R., Representation theory and Wigner-Racah algebra of the group SU(2) in a noncanonical basis, Collect. Czech. Chem. Commun. 70 (2005), 771–796, quant-ph/0504025. [47] Kibler M.R., Angular momentum and mutually unbiased bases, Internat. J. Modern Phys. B 20 (2006), 1792–1801, quant-ph/0510124. [48] Kibler M.R., Planat M., A SU(2) recipe for mutually unbiased bases, Internat. J. Modern Phys. B 20 (2006), 1802–1807, quant-ph/0601092. [49] Albouy O., Kibler M.R., SU2 nonstandard bases: case of mutually unbiased bases, SIGMA 3 (2007), 076, 22 pages, quant-ph/0701230. [50] Ivanović I.D., Geometrical description of quantum state determination, J. Phys. A: Math. Gen. 14 (1981), 3241–3245. [51] Šťov́ıček P., Tolar J., Quantum mechanics in a discrete space-time, Rep. Math. Phys. 20 (1984), 157–170. [52] Balian R., Itzykson C., Observations sur la mécanique quantique finie, C.R. Acad. Sci. (Paris) 303 (1986), 773–778. [53] Wootters W.K., Fields B.D., Optimal state-determination by mutually unbiased measurements, Ann. Phys. (N.Y.) 191 (1989), 363–381. [54] Barnum H., MUBs and spherical 2-designs, quant-ph/0205155. [55] Bandyopadhyay S., Boykin P.O., Roychowdhury V., Vatan F., A new proof for the existence of mutually unbiased bases, Algorithmica 34 (2002), 512–528, quant-ph/0103162. [56] Chaturvedi S., Aspects of mutually unbiased bases in odd-prime-power dimensions, Phys. Rev. A 65 (2002), 044301, 3 pages, quant-ph/0109003. [57] Pittenger A.O., Rubin M.H., Mutually unbiased bases, generalized spin matrices and separability, Linear Algebra Appl. 390 (2004), 255–278, quant-ph/0308142. http://arxiv.org/abs/hep-th/9407071 http://arxiv.org/abs/nucl-th/9602015 http://arxiv.org/abs/nlin.SI/0701030 http://arxiv.org/abs/hep-th/9212157 http://arxiv.org/abs/hep-th/9305130 http://arxiv.org/abs/hep-th/9905149 http://arxiv.org/abs/math-ph/0312019 http://arxiv.org/abs/quant-ph/0609017 http://arxiv.org/abs/physics/9712034 http://arxiv.org/abs/quant-ph/0504025 http://arxiv.org/abs/quant-ph/0510124 http://arxiv.org/abs/quant-ph/0601092 http://arxiv.org/abs/quant-ph/0701230 http://arxiv.org/abs/quant-ph/0205155 http://arxiv.org/abs/quant-ph/0103162 http://arxiv.org/abs/quant-ph/0109003 http://arxiv.org/abs/quant-ph/0308142 14 M.R. Kibler [58] Klappenecker A., Rötteler M., Constructions of mutually unbiased bases, Lect. Notes Comput. Sci. 2948 (2004), 137–144, quant-ph/0309120. [59] Bengtsson I., Three ways to look at mutually unbiased bases, quant-ph/0610216. [60] Berndt B.C., Evans R.J., Williams K.S., Gauss and Jacobi Sums, Wiley, New York, 1998. [61] Zauner G., Quantendesigns: Grundzüge einer nichtcommutativen Designtheorie, Diploma Thesis, University of Wien, 1999. [62] Caves C.M., Fuchs C.A., Schack R., Unknown quantum states: the quantum de Finetti representation, J. Math. Phys. 43 (2002), 4537–4559, quant-ph/0104088. [63] Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M., Symmetric informationally complete quantum mea- surements, J. Math. Phys. 45 (2004), 2171–2180, quant-ph/0310075. [64] Appleby D.M., Symmetric informationally complete-positive operator valued measures and the extended Clifford group, J. Math. Phys. 46 (2005), 052107, 29 pages, quant-ph/0412001. [65] Grassl M., Tomography of quantum states in small dimensions, Elec. Notes Discrete Math. 20 (2005), 151–164. [66] Klappenecker A., Rötteler M., Mutually unbiased bases are complex projective 2-designs, quant-ph/0502031. [67] Klappenecker A., Rötteler M., Shparlinski I.E., Winterhof A., On approximately symmetric informationally complete positive operator-valued measures and related systems of quantum states, J. Math. Phys. 46 (2005), 082104, 17 pages, quant-ph/0503239. [68] Weigert S., Simple minimal informationally complete measurements for qudits, Internat. J. Modern Phys. B 20 (2006), 1942–1955, quant-ph/0508003. [69] Albouy A., Kibler M.R., A unified approach to SIC-POVMs and MUBs, arXiv:0704.0511. [70] Znojil M., PT-symmetric regularizations in supersymmetric quantum mechanics, J. Phys. A: Math. Gen. 37 (2004), 10209–10222, hep-th/0404145. [71] Hall J.L., Rao A., SIC-POVMs exist in all dimensions, arXiv:0707.3002. http://arxiv.org/abs/quant-ph/0309120 http://arxiv.org/abs/quant-ph/0610216 http://arxiv.org/abs/quant-ph/0104088 http://arxiv.org/abs/quant-ph/0310075 http://arxiv.org/abs/quant-ph/0412001 http://arxiv.org/abs/quant-ph/0502031 http://arxiv.org/abs/quant-ph/0503239 http://arxiv.org/abs/quant-ph/0508003 http://arxiv.org/abs/0704.0511 http://arxiv.org/abs/hep-th/0404145 http://arxiv.org/abs/0707.3002 1 Introduction 2 Quons and k-fermions 3 Quons and fractional supersymmetry 3.1 Fractional supersymmetric system 3.2 Generalized Weyl-Heisenberg algebra 3.3 Realizations of k-SUSY systems 4 Quons and polar decomposition 5 MUBs and POVMs 5.1 MUBs 5.2 POVMs 6 Open questions References