Wavelet-Based Quantum Field Theory
The Euclidean quantum field theory for the fields φΔx(x), which depend on both the position x and the resolution Δx, constructed in SIGMA 2 (2006), 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there shou...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147195 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Wavelet-Based Quantum Field Theory / M.V. Altaisky // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The Euclidean quantum field theory for the fields φΔx(x), which depend on both the position x and the resolution Δx, constructed in SIGMA 2 (2006), 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments. |
---|