Conformal Powers of the Laplacian via Stereographic Projection

A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on E...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Graham, C.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147207
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147207
record_format dspace
spelling irk-123456789-1472072019-02-14T01:26:01Z Conformal Powers of the Laplacian via Stereographic Projection Graham, C.R. A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on Euclidean space (the k-th power of the Euclidean Laplacian) via conjugation by the stereographic projection mapping. 2007 Article Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53B20 http://dspace.nbuv.gov.ua/handle/123456789/147207 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on Euclidean space (the k-th power of the Euclidean Laplacian) via conjugation by the stereographic projection mapping.
format Article
author Graham, C.R.
spellingShingle Graham, C.R.
Conformal Powers of the Laplacian via Stereographic Projection
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Graham, C.R.
author_sort Graham, C.R.
title Conformal Powers of the Laplacian via Stereographic Projection
title_short Conformal Powers of the Laplacian via Stereographic Projection
title_full Conformal Powers of the Laplacian via Stereographic Projection
title_fullStr Conformal Powers of the Laplacian via Stereographic Projection
title_full_unstemmed Conformal Powers of the Laplacian via Stereographic Projection
title_sort conformal powers of the laplacian via stereographic projection
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147207
citation_txt Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT grahamcr conformalpowersofthelaplacianviastereographicprojection
first_indexed 2025-07-11T01:37:19Z
last_indexed 2025-07-11T01:37:19Z
_version_ 1837312611110092800
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 3 (2007), 121, 4 pages Conformal Powers of the Laplacian via Stereographic Projection? C. Robin GRAHAM Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195-4350, USA E-mail: robin@math.washington.edu URL: http://www.math.washington.edu/∼robin/ Received November 17, 2007; Published online December 15, 2007 Original article is available at http://www.emis.de/journals/SIGMA/2007/121/ Abstract. A new derivation is given of Branson’s factorization formula for the confor- mally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson’s formula from knowledge of the correspon- ding conformally invariant operator on Euclidean space (the k-th power of the Euclidean Laplacian) via conjugation by the stereographic projection mapping. Key words: conformal Laplacian; stereographic projection 2000 Mathematics Subject Classification: 53B20 Dedicated to the memory of Tom Branson 1 Introduction The powers of the Laplacian on Rn satisfy an invariance property with respect to conformal motions. If C is a conformal transformation satisfying C∗gE = Ω2gE , where gE denotes the Euclidean metric and Ω is the conformal factor, then ∆k = ( C−1 )∗ Ω−n/2−k∆k Ωn/2−kC∗, k ∈ N, (1) where the powers of Ω act by multiplication. This observation is the motivation for consideration of the “conformally invariant powers of the Laplacian” on a general curved conformal manifold (see [5]). In [1], Tom Branson derived the explicit form of such operators on the sphere Sn. He showed that any operator on Sn which satisfies the transformation law analogous to (1), where now C is a conformal transformation of Sn with conformal factor Ω, necessarily is a multiple of k∏ j=1 (∆S − cj), cj = (n 2 + j − 1)(n 2 − j). (2) Here ∆S denotes the Laplacian on the sphere, and our sign convention is ∆ = ∑ ∂2 i on Rn. To prove this, he introduced what are now called spectrum generating functions, by showing how to use infinitesimal conformal invariance to derive the full spectral decomposition of such an invariant operator from knowledge of its eigenvalue on a single spherical harmonic. Branson also used this argument to give the form of the pseudodifferential intertwining operators satisfying a transformation law analogous to (1) but involving more general, possibly complex, powers of Ω. ?This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. The full collection is available at http://www.emis.de/journals/SIGMA/MGC2007.html mailto:robin@math.washington.edu http://www.math.washington.edu/~robin/ http://www.emis.de/journals/SIGMA/2007/121/ http://www.emis.de/journals/SIGMA/MGC2007.html 2 C.R. Graham There are now (at least) two other derivations of the factorization (2). In [3], (2) is derived via a construction using tractors, and in [2] by explicit solution of the algorithm of [5] in terms of the dual Hahn polynomials, a family of discrete orthogonal polynomials. Both of these derivations show that the same formula gives a conformally invariant operator for any Einstein metric whose scalar curvature agrees with that of Sn. This can also be deduced directly from Branson’s result for Sn and the form of the GJMS algorithm; see the discussion in [2]. A rescaling gives the corresponding formula for general Einstein metrics. In this note we give a direct argument relating the operator ∆k on Rn and the operator (2) on Sn under stereographic projection. Thus the conformal invariance of the operator (2) is a consequence of (1). The case k = 1 is the Yamabe operator, whose conformal invariance, and therefore whose behavior under stereographic projection, is well-known. The argument here deduces the relation for k > 1 from the case k = 1 together with a calculation of pullback under stereographic projection. From this perspective, the constants cj for j > 1 are manufactured from c1 by the stereographic projection mapping. The derivation presented here is the analogue in the conformal case of an argument in [4] relating CR invariant operators on odd-dimensional spheres to corresponding operators on the Heisenberg group via the Cayley transform. The CR case is more complicated: there is a 1- parameter family of invariant operators for each k, and the operators on the Heisenberg group are not powers of a fixed operator, but rather are products of various of the Folland–Stein operators. 2 Derivation Let Φ : Sn \ {p} → Rn be stereographic projection: Φ(x′, xn+1) = x′(1 + xn+1)−1 = y for x′ ∈ Rn and |x′|2 + x2 n+1 = 1, where p = (0,−1) is the south pole. One has Φ∗ ( 2 1 + |y|2 ) = 1 + xn+1. The map Φ is conformal: Φ∗gE = (1 + xn+1)−2gS . Define Mw : C∞(Sn \ {p}) → C∞(Sn \ {p}) by Mwf = (1 + xn+1)wf and Mw : C∞(Rn) → C∞(Rn) by MwΦ∗ = Φ∗Mw, so that Mwf = 2w(1 + |y|2)−wf. The Yamabe operator on the sphere is Y = ∆S − c1, and its conformal invariance implies Y M1−n/2Φ∗ = M−1−n/2Φ∗∆ (3) acting on functions on Rn. Proposition 1. For k ∈ N, k∏ j=1 (∆S − cj)  Mk−n/2Φ∗ = M−k−n/2Φ∗∆k. (4) Conformal Powers of the Laplacian via Stereographic Projection 3 The analogue of (1) for the operator (2) under conformal transformations of Sn follows from (1) and (4), since conjugation by Φ maps conformal transformations of Rn to conformal transformations of Sn. The proof begins by noting that c1 − cj = j(j − 1), so that the left hand side of (4) may be written as k∏ j=1 (Y + j(j − 1))  Mk−n/2Φ∗. Now pass Φ∗ through each term using (3) and then cancel the Φ∗ to obtain that (4) is equivalent to the following identity on Rn: [∆ + k(k − 1)M2]M−2[∆ + (k − 1)(k − 2)M2]M−2 · · · [∆ + 2M2]M−2∆ = M1−k∆kM1−k. (5) The identity (5) can be proved by induction on k. The induction uses some commutator identities. Denote by X = ∑ yi∂yi the Euler vector field on Rn. The commutator identities are: [∆, X] = 2∆, (6) [X, Mw] = −w|y|2Mw+1, (7) [∆,Mw] = −wMw ( 2X + n− (w − 1)M1|y|2 ) M1, (8) [∆k,M−1] = k (2X + n + 2(k − 1))∆k−1. (9) The first three are just direct calculations. The last is an easy induction on k. Equation (8) has been written in the form above because this is advantageous below, but it is easily seen using (7) that this may also be written perhaps a little more naturally as [∆,Mw] = −wMw+1 ( 2X + n− (w + 1)M1|y|2 ) . In this form it is clear that the k = 1 case of (9) is the w = −1 case of (8). Now prove (5) by induction. The k = 1 case is a tautology. Assuming the result for k and substituting this in the left hand side for k + 1 gives [∆ + k(k + 1)M2]M−2M1−k∆kM1−k, which equals ∆M−k−1∆kM1−k + k(k + 1)M1−k∆kM1−k = M−k∆M−1∆kM1−k + [∆,M−k]M−1∆kM1−k + k(k + 1)M1−k∆kM1−k = M−k∆k+1M−k −M−k∆[∆k,M−1]M1−k + [∆,M−k]M−1∆kM1−k + k(k + 1)M1−k∆kM1−k. Upon substituting (9) and (8) and then using (6) to commute the ∆ through the X which arises in the second term and finally simplifying, one finds that the last three terms add up to 0, thus completing the induction step. Acknowledgments This research was partially supported by NSF grant # DMS 0505701. 4 C.R. Graham References [1] Branson T., Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc. 347 (1995), 3671–3742. [2] Fefferman C., Graham C.R., The ambient metric, arXiv:0710.0919. [3] Gover A.R., Laplacian operators and Q-curvature on conformally Einstein manifolds, Math. Ann. 336 (2006), 311–334, math.DG/0506037. [4] Graham C.R., Compatibility operators for degenerate elliptic equations on the ball and Heisenberg group, Math. Z. 187 (1984), 289–304. [5] Graham C.R., Jenne R., Mason L.J., Sparling G.A.J., Conformally invariant powers of the Laplacian, I: Existence, J. London Math. Soc. 46 (1992), 557–565. http://arxiv.org/abs/0710.0919 http://arxiv.org/abs/math.DG/0506037 1 Introduction 2 Derivation References