Integrability and Diffeomorphisms on Target Space
We briefly review the concepts of generalized zero curvature conditions and integrability in higher dimensions, where integrability in this context is related to the existence of infinitely many conservation laws. Under certain assumptions, it turns out that these conservation laws are, in fact, gen...
Saved in:
Date: | 2007 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2007
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147213 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Integrability and Diffeomorphisms on Target Space / C. Adam, J. Sanchez-Guillen, A. Wereszczynski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | We briefly review the concepts of generalized zero curvature conditions and integrability in higher dimensions, where integrability in this context is related to the existence of infinitely many conservation laws. Under certain assumptions, it turns out that these conservation laws are, in fact, generated by a class of geometric target space transformations, namely the volume-preserving diffeomorphisms. We classify the possible conservation laws of field theories for the case of a three-dimensional target space. Further, we discuss some explicit examples. |
---|