Branson's Q-curvature in Riemannian and Spin Geometry
On a closed n-dimensional manifold, n ≥ 5, we compare the three basic conformally covariant operators: the Paneitz-Branson, the Yamabe and the Dirac operator (if the manifold is spin) through their first eigenvalues. On a closed 4-dimensional Riemannian manifold, we give a lower bound for the square...
Gespeichert in:
Datum: | 2007 |
---|---|
Hauptverfasser: | Hijazi, O., Raulot, S. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2007
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147214 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Branson's Q-curvature in Riemannian and Spin Geometry / O. Hijazi, S. Raulot // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
The Research of Thomas P. Branson
von: Eastwood, M.G., et al.
Veröffentlicht: (2008) -
Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature
von: Herranz, F.J., et al.
Veröffentlicht: (2006) -
On the Relation between Curvature, Diameter, and Volume of a Complete Riemannian Manifold
von: Si Duc Quang, et al.
Veröffentlicht: (2004) -
Conformal Metrics with Constant Q-Curvature
von: Malchiodi, A.
Veröffentlicht: (2007) -
Q-Curvature, Spectral Invariants, and Representation Theory
von: Branson, T.P.
Veröffentlicht: (2007)