An Additive Basis for the Chow Ring of M₀,₂(Pr,2)
We begin a study of the intersection theory of the moduli spaces of degree two stable maps from two-pointed rational curves to arbitrary-dimensional projective space. First we compute the Betti numbers of these spaces using Serre polynomial and equivariant Serre polynomial methods developed by E. Ge...
Saved in:
Date: | 2007 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2007
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147227 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | An Additive Basis for the Chow Ring of M₀,₂(Pr,2) / J.A. Cox // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. |