Monodromy of a Class of Logarithmic Connections on an Elliptic Curve

The logarithmic connections studied in the paper are direct images of regular connections on line bundles over genus-2 double covers of the elliptic curve. We give an explicit parametrization of all such connections, determine their monodromy, differential Galois group and the underlying rank-2 vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
1. Verfasser: Machu, Francois-Xavier
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147230
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Monodromy of a Class of Logarithmic Connections on an Elliptic Curve / Francois-Xavier Machu // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147230
record_format dspace
fulltext
spelling irk-123456789-1472302019-02-14T01:23:37Z Monodromy of a Class of Logarithmic Connections on an Elliptic Curve Machu, Francois-Xavier The logarithmic connections studied in the paper are direct images of regular connections on line bundles over genus-2 double covers of the elliptic curve. We give an explicit parametrization of all such connections, determine their monodromy, differential Galois group and the underlying rank-2 vector bundle. The latter is described in terms of elementary transforms. The question of its (semi)-stability is addressed. 2007 Article Monodromy of a Class of Logarithmic Connections on an Elliptic Curve / Francois-Xavier Machu // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 19 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 14D21; 14H52; 14H60; 32S40 http://dspace.nbuv.gov.ua/handle/123456789/147230 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The logarithmic connections studied in the paper are direct images of regular connections on line bundles over genus-2 double covers of the elliptic curve. We give an explicit parametrization of all such connections, determine their monodromy, differential Galois group and the underlying rank-2 vector bundle. The latter is described in terms of elementary transforms. The question of its (semi)-stability is addressed.
format Article
author Machu, Francois-Xavier
spellingShingle Machu, Francois-Xavier
Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Machu, Francois-Xavier
author_sort Machu, Francois-Xavier
title Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
title_short Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
title_full Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
title_fullStr Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
title_full_unstemmed Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
title_sort monodromy of a class of logarithmic connections on an elliptic curve
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147230
citation_txt Monodromy of a Class of Logarithmic Connections on an Elliptic Curve / Francois-Xavier Machu // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 19 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT machufrancoisxavier monodromyofaclassoflogarithmicconnectionsonanellipticcurve
first_indexed 2025-07-11T01:41:10Z
last_indexed 2025-07-11T01:41:10Z
_version_ 1837312844561907712