A study of the microwave amplification in MILO with the flat interaction space
The magnetically insulated transmission line oscillator (MILO) is the crossed field device developed for generation of microwave power at gigawatt level. We have used a numerical simulation method to investigate electromagnetic oscillations in MILO where a plane region of interaction between the flo...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147243 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A study of the microwave amplification in MILO with the flat interaction space / A.M. Gorban’, Yu.F. Lonin, G.E. Sarukhanyan // Вопросы атомной науки и техники. — 2018. — № 3. — С. 42-44. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The magnetically insulated transmission line oscillator (MILO) is the crossed field device developed for generation of microwave power at gigawatt level. We have used a numerical simulation method to investigate electromagnetic oscillations in MILO where a plane region of interaction between the flow of electrons and the field of the
slow-wave structure is installed. The system under study is a segment of the plane transmitting line of an infinite
width. The slow-wave structure in the form of a comb is placed on one of the electrodes (anode). The other electrode
(cathode) is an explosive electron-emitting source. The line areas on the left and on the right of the slow-wave structure are filled with absorbent to prevent the electromagnetic wave reflection. After the voltage application to the
transmission line, an electron flow magnetic self-insulation mode is installed. The slow-wave structure is exited by
an external signal. The results obtained for this model were used to calculate the transfer ratio as a function of the
exciting signal amplitude and signal frequency detuning with respect to the slow-wave structure principal mode. The
spectral characteristics of output signals have been estimated for different excitation modes. The spectral characteristics of output signals have been estimated for different excitation modes. |
---|