Velocity field based method for data processing in radionuclide studies
In this paper, we consider a method of construction of a velocity field based on an optimization approach. A general formulation of the problem is given. It is shown how, under the appropriate assumption, it reduces to known particular case. Two-dimensional case of the velocity field construction...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147303 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Velocity field based method for data processing in radionuclide studies / E.D. Kotina, D.A. Ovsyannikov // Вопросы атомной науки и техники. — 2018. — № 3. — С. 128-131. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147303 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1473032019-02-15T01:24:56Z Velocity field based method for data processing in radionuclide studies Kotina, E.D. Ovsyannikov, D.A. Детекторы и детектирование ядерных излучений In this paper, we consider a method of construction of a velocity field based on an optimization approach. A general formulation of the problem is given. It is shown how, under the appropriate assumption, it reduces to known particular case. Two-dimensional case of the velocity field construction is considered in detail under the gradient constancy assumption of the density of the radiopharmaceutical distribution. The problem is reduced to solving a sparse system of large dimension, and the convergence of the iterative algorithm to the solution is considered. This method can be used in the radionuclide data processing. Радіонуклідні методи є одними з сучасних методів функціональної діагностики різних органів і систем організму людини, які вимагають використання математичних методів обробки та аналізу даних, отриманих у ході дослідження. Тому розвиток сучасних методів обробки радіонуклідних зображень є актуальним завданням. У статті розглядається метод для обробки радіонуклідних зображень, заснований на побудові поля швидкостей. Даний метод може застосовуватися для корекції руху, побудови контурів, аналізу радіонуклідних зображень, також він може використовуватися для аналізу та формування динаміки заряджених частинок. Радионуклидные методы являются одними из современных методов функциональной диагностики различных органов и систем организма человека, которые требуют использования математических методов обработки и анализа данных, полученных в ходе исследования. Поэтому развитие современных методов обработки радионуклидных изображений является актуальной задачей. В статье рассматривается метод для обработки радионуклидных изображений, основанный на построении поля скоростей. Данный метод может применяться для коррекции движения, построения контуров, анализа радионуклидных изображений, также он может использоваться для анализа и формирования динамики заряженных частиц. 2018 Article Velocity field based method for data processing in radionuclide studies / E.D. Kotina, D.A. Ovsyannikov // Вопросы атомной науки и техники. — 2018. — № 3. — С. 128-131. — Бібліогр.: 14 назв. — англ. 1562-6016 PACS: 87.15.A http://dspace.nbuv.gov.ua/handle/123456789/147303 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Детекторы и детектирование ядерных излучений Детекторы и детектирование ядерных излучений |
spellingShingle |
Детекторы и детектирование ядерных излучений Детекторы и детектирование ядерных излучений Kotina, E.D. Ovsyannikov, D.A. Velocity field based method for data processing in radionuclide studies Вопросы атомной науки и техники |
description |
In this paper, we consider a method of construction of a velocity field based on an optimization approach. A
general formulation of the problem is given. It is shown how, under the appropriate assumption, it reduces to known
particular case. Two-dimensional case of the velocity field construction is considered in detail under the gradient
constancy assumption of the density of the radiopharmaceutical distribution. The problem is reduced to solving a
sparse system of large dimension, and the convergence of the iterative algorithm to the solution is considered. This
method can be used in the radionuclide data processing. |
format |
Article |
author |
Kotina, E.D. Ovsyannikov, D.A. |
author_facet |
Kotina, E.D. Ovsyannikov, D.A. |
author_sort |
Kotina, E.D. |
title |
Velocity field based method for data processing in radionuclide studies |
title_short |
Velocity field based method for data processing in radionuclide studies |
title_full |
Velocity field based method for data processing in radionuclide studies |
title_fullStr |
Velocity field based method for data processing in radionuclide studies |
title_full_unstemmed |
Velocity field based method for data processing in radionuclide studies |
title_sort |
velocity field based method for data processing in radionuclide studies |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Детекторы и детектирование ядерных излучений |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147303 |
citation_txt |
Velocity field based method for data processing in radionuclide studies / E.D. Kotina, D.A. Ovsyannikov // Вопросы атомной науки и техники. — 2018. — № 3. — С. 128-131. — Бібліогр.: 14 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT kotinaed velocityfieldbasedmethodfordataprocessinginradionuclidestudies AT ovsyannikovda velocityfieldbasedmethodfordataprocessinginradionuclidestudies |
first_indexed |
2025-07-11T01:49:18Z |
last_indexed |
2025-07-11T01:49:18Z |
_version_ |
1837313358913601536 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №3(115) 128
VELOCITY FIELD BASED METHOD FOR DATA PROCESSING
IN RADIONUCLIDE STUDIES
E.D. Kotina, D.A. Ovsyannikov
Saint-Petersburg State University, Saint-Petersburg, Russia
E-mail: e.kotina@spbu.ru
In this paper, we consider a method of construction of a velocity field based on an optimization approach. A
general formulation of the problem is given. It is shown how, under the appropriate assumption, it reduces to known
particular case. Two-dimensional case of the velocity field construction is considered in detail under the gradient
constancy assumption of the density of the radiopharmaceutical distribution. The problem is reduced to solving a
sparse system of large dimension, and the convergence of the iterative algorithm to the solution is considered. This
method can be used in the radionuclide data processing.
PACS: 87.15.A
INTRODUCTION
BASIC CONCEPTS
The solution of various inverse problems has always
been of great practical interest. In [1], the problem of
determining velocity field from a given density of the
distribution of charged particles was considered. In this
paper, we propose to use this approach for the radionu-
clide data processing, and to search for the velocity field
from the known radiopharmaceutical distribution densi-
ty [2].
Radionuclide studies are performed using gamma
cameras and gamma tomographs [3]. Radionuclide
methods are one of the most modern methods of func-
tional diagnostics of diseases of the cardiovascular sys-
tem, nephrology system, hepatobiliary systems etc. [2,
4, 5]. They require using of mathematical methods for
data processing and analysis.
РROBLEM STATEMENT
Let us consider following system of differential
equations
fx , (1)
.0
3
1
divff
xt
i
i i
(2)
In accordance with the statement of the problem in
article [1], we assume that the transport of the radio-
pharmaceutical is described by equation (1) and the dis-
tribution density of the radiopharmaceutical satisfies the
Liouville’s equation (2). Here t is time,
Txxxx ),,( 321
the spatial coordinate’s vector,
),,,(),( 321 xxxtxt
radiopharmaceutical dis-
tribution density,
Tfffxtff ),,(),( 321
is the ve-
locity field and the superscript T denotes transposition
of vector.
We suppose that given function ),( xt satisfies the
equation (2). The problem is to restore the velocity field
of the system (1), i.e. to find function ),( xtf . In com-
mon case, this is ill-posed problem [6]. So in [1] the
regularization method is used and the corresponding
variational problem is investigated.
Further we will denote
zxyxxx 321 ,, ,
.,, 321 wfvfuf
Following suggested approach [1] let us fix some
moment t and formulate the problem of determination
function ),( xtf as a minimization problem. We intro-
duce the functional
,),,( 222 dxdydzwvuJ
M
(3)
where ,))(( 22
zyxzyxt wvuwvu
,2222222222
zyxzyxzyx wwwvvvuuu
α2
is a regularization parameter, M is a nonzero measure
region in R
3
, , ,t x y are notations for partial deriva-
tives of first order in yxt ,,
respectively.
Thus, the problem of finding velocity field is con-
sidered as a functional minimization problem (3) [1, 7].
If we put in the equation (2) 0divf , we get a case
of the so-called optical flow, when the density of the
indicator remains constant along the trajectories of the
system (1) [8, 9].
Further we consider two-dimensional case
,, 21 yxxx
Tvuf ),( .
The Euler-Lagrange equations for the integral func-
tional (3) were written in [1] for the general three-
dimensional case. For the two-dimensional case, taking
into account 0divf , we obtain the well-known equa-
tions for finding the velocity field [8]:
2 2
2 2
,
,
x x y t x
y x y t y
u u v
v v u
(4)
here Laplace operator.
As a result of this approach, the problem for deter-
mining functions vu, reduces to solving the system (4)
under the appropriate boundary conditions.
In this paper we will consider in more detail the case
of the gradient constancy assumption, i.e. when the gra-
dient of the distribution density along the trajectories of
the system (1) remains constant:
,
,
ytyyyx
xtxyxx
vu
vu
(5)
here , , , ,xx xt xy yy yt are notations for partial deriva-
tives of the second order.
In this case, the integral functional (3) will be con-
sidered for the two-dimensional case and we put
.)()( 222 vuvu yyyxytxyxxxt
ISSN 1562-6016. ВАНТ. 2018. №3(115) 129
The Euler-Lagrange equations will have following
form
.
)()(
,
)()(
222
222
ytyyxtxy
yyxxxyyyxy
ytyxxtxx
yyxxxyyxxx
uvv
vuu
(6)
To find the velocity field of the system (1), it is nec-
essary to solve the system (6) under the appropriate
boundary conditions.
DATA PROCESSING
CONSTRUCTION OF THE SPARSE SYSTEM
OF SPECIAL FORM
We consider the system (6), where Myx ),( and
functions u, v are defined at the boundary of the region M.
The dynamic data acquisition mode allows observ-
ing radiopharmaceutical density distribution in the stud-
ied system as a function of time [2]. As a result we ob-
tain radiopharmaceutical density distribution as a func-
tion of time and spatial coordinates ),,( yxt ,
Tt ,0 , Myx ),( . Taking into account the discreti-
zation with respect to time and spatial coordinates we
get the sequence of matrices.
We denote the density distribution of the radiophar-
maceutical at the point located at the intersection of i-th
line, j-th column, and k-th moment of time as ),,( ji
.1,,0, Nji
The solution of system (6) can be con-
sidered at the nodes of a square grid with a step equal to
the one pixel change in the distance along any axis. In
the grid point ),( ji
the approximation to the solution of
system (6) can be written as ),(),,( jivjiu . Laplacians
in (6) then can be changed with finite differences and
partial derivatives of the second order can be calculated
using the density values in the neighboring grid points
according to the chosen scheme. So we obtain linear
system of equations
).,(),(),(),(
),(),()),(),((
),()),(),(4())1,(
)1,(),1(),1((
),,(),(),(),(
),(),()),(),((
),()),(),(4())1,(
)1,(),1(),1((
222
2
222
2
jijijiji
jiujijiji
jivjijijiv
jivjivjiv
jijijiji
jivjijiji
jiujijijiu
jiujiujiu
ytyyxtxy
xyyyxx
yyxy
ytyxxtxx
xyyyxx
yxxx
(7)
.,,1, Nji
According to our assumption that the functions vu,
are given on the boundary of the region, only
22N at
the interior points of the grid are unknown in equations
(7). Thus, we obtain a linear system of
22N equations,
the solution of which gives an approximation to the so-
lution of the system (6) at grid points. Further we will
denote
ijij vjivujiu ),(,),( .
As a result of the discretization of the system of par-
tial differential equations (6), a linear system of differ-
ence equations (7) was obtained, and then we consider
its solution. Let introduce the following notation
Tnzzzzz ,...,,, 321 , where ,
s
s
s
v
u
z
,),...,,...,,...,,,...,(
),...,,(
1221111
21
T
NNNNN
T
n
uuuuuu
uuu
.),...,,...,,...,,,...,(
),...,,(
1221111
21
T
NNNNN
T
n
vvvvvv
vvv
The system (7) can be written in the following form
qHz . (8)
The matrix H and right-hand side and vector of
unknowns are portioned as follows
nnnnnnn
n
n
q
q
q
z
z
z
HHH
HHH
HHH
2
1
2
1
1,1
22221
11211
, (9)
the partitioning of q and z into subvectors iq and iz
of size 2 are identical and compatible with the partition-
ing of H . Here H block matrix of size
,nn ,2Nn with square blocks of second order
ssss
ssss
ss
cb
ba
H , ),(),(4 222 jijia yxxxss ,
)),,(),()(,( jijijib yyxxxyss
),(),(4 222 jijiс yxyyss , Nji ,1, ,
sr
sr
sr
c
a
H
0
0
, rs , ,srsr ca and nonzero ele-
ments are equal to
2 ;
s
s
s
e
d
q ,
2,1, Nrs ,
,),...,,...,,...,,,...,(
),...,,(
1221111
21
T
NNNNN
T
n
dddddd
ddd
here ),,(),(),(),( jijijijid ytyxxtxxji
Nji ,1, .
,),...,,...,,...,,,...,(
),...,,(
1221111
21
T
NNNNN
T
n
eeeeee
eee
here ),,(),(),(),( jijijijie ytyyxtxyji Nji ,1, .
Fig. 1 shows the matrix H scheme for the mesh 66.
Fig. 1. Pattern of matrix associated with the 66 mesh
ISSN 1562-6016. ВАНТ. 2018. №3(115) 130
System (8) is large sparse linear system, and we will
solve it by iterative block Gauss-Seidel method [10].
BLOCK GAUSS-SEIDEL METHOD.
THE CONVERGENCE OF METHOD
Let us represent matrix H in following way
FEDH . (10)
Matrix D block diagonal, E and F lower tri-
angular and upper triangular block matrices, respective-
ly.
nnH
H
H
D
00
0
00
00
22
11
,
0
0
0
1,1
221
112
nnn
n
n
HH
HH
HH
FE
,
note, that zeros here are for zero blocks of second order.
Block Gauss-Seidel method for solving system (8),
corresponding to introduced partition (9), has the fol-
lowing form
,...,1,0,,1
,11
kni
qzHzHzH i
n
ij
k
jij
k
j
n
ij
ij
k
iii
(11)
or taking into account (10) and using matrix notations
qzFzED kk 1)( , ,...,2,1,0k . (12)
For the convergence of the method it is sufficient
that the conditions obtained in [11] be satisfied:
.")"
,
22
,1
,
22
)
,,1
,0,0,0)
2
2
1
1
2
2
2
conditioneirreduciblblockc
b
ca
a
ca
ssomeforandns
b
ca
a
ca
b
ns
cabcaa
ss
ssss
n
ir
r
sr
ssss
n
sr
r
ss
ssss
sr
ssss
ssssssssss
(13)
It is easy to verify that conditions (13) are satisfied
for system (8), and thus the Gauss-Seidel method con-
verges to a unique solution of system (8) for any initial
approximation.
METHOD APPLICATIONS FOR DATA
PROCESSING IN RADIONUCLIDE STUDIES
This method can be used to process radionuclide
images. Important stages of processing radionuclide
studies are motion correction [12 - 14], contour con-
struction and analysis of the regions of interest (ROI).
This method can be used to solve these problems.
Figs. 2 - 5 give examples of the results of constructing
the velocity field for radionuclide images. In Fig. 2, we
see two images obtained in the study of the human
hepatobiliary system in which there is a shift of the
studied organ. In the region indicated by the dotted line,
the velocity field has the form shown in Fig. 3.
Fig. 2. Two radionuclide images of hepatobiliary system
0 5 10 15 20 25 30 35 40
0
5
10
15
20
25
30
35
40
Fig. 3. Velocity field
In Fig. 4, we see the images of region of interest at
the moment of time k and 1k , these are fragments
of images of cardiac radionuclide research. In Fig. 5 the
velocity field constructed in this region is represented.
2 4 6 8 10 12 14 16 18 20
2
4
6
8
10
12
14
16
18
20
2 4 6 8 10 12 14 16 18 20
2
4
6
8
10
12
14
16
18
20
Fig. 4. Images of region of interest (ROI)
0 2 4 6 8 10 12 14 16 18 20
0
2
4
6
8
10
12
14
16
18
20
Fig. 5. Velocity field
The data illustrate the possibility of using this meth-
od for the motion detecting and its subsequent correc-
tion, and also for constructing the contours of the inves-
tigated objects on radionuclide images.
CONCLUSIONS
The method of constructing the velocity field pro-
posed in the article can be used in solving the problems
of data processing of radionuclide studies. The variants
of application given in the article can be used for the
analysis of radionuclide images, on their basis it is pos-
sible to build algorithms of construction of contours of
the investigated areas of interest, and also to carry out
ISSN 1562-6016. ВАНТ. 2018. №3(115) 131
correction of motion for dynamic radionuclide research-
es.
This method can also be used in other problems, for
example, in the study of dynamics of charged particles.
REFERENCES
1. D.A. Ovsyannikov, E.D. Kotina. Determination of
velocity field by given density distribution of
charged particles // Problems of Atomic Science and
Technology. Series “Nuclear Physics Investiga-
tions”. 2012, № 3, p. 122-125.
2. E.D. Kotina. Data processing in radionuclide studies
// Problems of Atomic Science and Technology. Se-
ries “Nuclear Physics Investigations”. 2012, № 3,
p. 195-198.
3. M.A. Arlychev, V.L. Novikov, A.V. Sidorov,
A.M. Fialkovskii, E.D. Kotina, D.A. Ovsyannikov,
V.A. Ploskikh. EFATOM Two-Detector One-
Photon Emission Gamma Tomograph // Technical
Physics. 2009, v. 54, № 10, p. 1539-1547.
4. E.D. Kotina, V.A Ploskikh. Data Processing and Quan-
titation in Nuclear Medicine // Proceedings of Ru-
PAC2012.http://accelconf.web.cern.ch/AccelConf/ru
pac2012/, 2012, p. 526-528.
5. E.D. Kotina, V.A. Ploskikh, A.V Babin. Radionu-
clide Methods Application in Cardiac Studies //
Problems of Atomic Science and Technology. Series
“Nuclear Physics Investigations”. 2013, № 6,
p. 179-182.
6. A.N. Tikhonov, V.Y. Arsenin. Methods for Solving
Ill-posed Problems. M: “Nauka”, 1979, p. 288.
7. D.A. Ovsyannikov, E.D. Kotina. Reconstruction of
velocity field // Proceedings of ICAP2012,
http://accelconf.web.cern.ch/AccelConf/ICAP2012,
2012, p. 256-258.
8. B.K.P. Horn, B.G. Schunck. Determining optical flow
// Artificial intelligence. 1981, v. 17, p. 185-203.
9. E. Kotina, G. Pasechnaya. 3D velocity field for heart
tomography // 2015 International Conference on
“Stability and Control Processes” in Memory of
V.I. Zubov, SCP 2015 – Proceedings 7342231, 2015,
p. 646-647.
10. Y. Saad. Iterative methods for sparse linear systems.
Philadelphia: Siam, 2003, 552 p.
11. E.D. Kotina. On convergence of block iterative
methods // Izvestiya Irkutskogo gosudarstvennogo
universiteta, 2012, v. 5, № 3, p. 41-55 (in Russian).
12. D.A. Ovsyannikov, E.D. Kotina, A.Yu. Shirokolobov.
Mathematical Methods of Motion Correction in Ra-
dionuclide Studies // Problems of Atomic Science
and Technology. Series “Nuclear Physics Investiga-
tions”. 2013, № 6, p. 137-140.
13. G. Germano, T. Chua, P. Kavanagh, et al. Detection
and correction of patient motion in dynamic and
static myocardial SPECT using a multi-detector
camera // Journal of Nuclear Medicine. 1993, v. 34,
p. 1394-1395.
14. R.D. Folks, D. Manatunga, E.V. Garcia, A.T. Taylor.
Automated patient motion detection and correction
in dynamic renal scintigraphy // J. Nucl Med Tech-
nol. 2011, v. 39(2), p. 131-139.
Article received 05.03.2018
МЕТОД ПОЛЯ СКОРОСТЕЙ ДЛЯ ОБРАБОТКИ ДАННЫХ РАДИОНУКЛИДНЫХ
ИССЛЕДОВАНИЙ
Е.Д. Котина, Д.А. Овсянников
Радионуклидные методы являются одними из современных методов функциональной диагностики раз-
личных органов и систем организма человека, которые требуют использования математических методов
обработки и анализа данных, полученных в ходе исследования. Поэтому развитие современных методов
обработки радионуклидных изображений является актуальной задачей. В статье рассматривается метод для
обработки радионуклидных изображений, основанный на построении поля скоростей. Данный метод может
применяться для коррекции движения, построения контуров, анализа радионуклидных изображений, также
он может использоваться для анализа и формирования динамики заряженных частиц.
МЕТОД ПОЛЯ ШВИДКОСТЕЙ ДЛЯ ОБРОБКИ ДАНИХ РАДІОНУКЛІДНИХ ДОСЛІДЖЕНЬ
O.Д. Котіна, Д.А. Овсянников
Радіонуклідні методи є одними з сучасних методів функціональної діагностики різних органів і систем
організму людини, які вимагають використання математичних методів обробки та аналізу даних, отриманих
у ході дослідження. Тому розвиток сучасних методів обробки радіонуклідних зображень є актуальним за-
вданням. У статті розглядається метод для обробки радіонуклідних зображень, заснований на побудові поля
швидкостей. Даний метод може застосовуватися для корекції руху, побудови контурів, аналізу радіонуклід-
них зображень, також він може використовуватися для аналізу та формування динаміки заряджених части-
нок.
|