Photonuclear production of F-18

¹⁸F is one of the most important positron emitters which are routinely used in the positron emission tomography (PET). The recoil nuclei method in the ¹⁹F(Ɣ,n)¹⁸F reaction was used for the production of ¹⁸F free carrier. The sufficiently high energy of recoil nuclei in this reaction can be up to 20...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Dikiy, N.P., Dovbnya, A.N., Krasnoselsky, N.V., Lyashko, Yu.V., Medvedeva, E.P., Medvedev, D.V., Uvarov, V.L., Fedorets, I.D.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147306
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Photonuclear production of F-18 / N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2018. — № 3. — С. 146-149. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147306
record_format dspace
spelling irk-123456789-1473062019-02-15T01:24:58Z Photonuclear production of F-18 Dikiy, N.P. Dovbnya, A.N. Krasnoselsky, N.V. Lyashko, Yu.V. Medvedeva, E.P. Medvedev, D.V. Uvarov, V.L. Fedorets, I.D. Применение ядерных методов ¹⁸F is one of the most important positron emitters which are routinely used in the positron emission tomography (PET). The recoil nuclei method in the ¹⁹F(Ɣ,n)¹⁸F reaction was used for the production of ¹⁸F free carrier. The sufficiently high energy of recoil nuclei in this reaction can be up to 200 keV. The mixture of 180 nanometer CaF₂ nanoparticles and an acceptor in the form of a nanoparticle of food salt was irradiated with bremsstrahlung with a maximum energy of 13.5 MeV. Irradiated samples were placed in distilled water to dissolve the sodium chloride. The yield of the ¹⁸F isotope in the solution was 30.2% of the total activity of the sample. The estimation of the ¹⁸F production on an electron accelerator with a power of 10 kW and an energy of 35 MeV can be up to 1 Ci for 4 hours. ¹⁸F є один з найважливіших позитронних випромінювачів, який зазвичай використовується в позитронній емісійній томографії (ПЕТ). Мета нашого дослідження полягала в тому, щоб розвинути метод ядер віддачі в реакції ¹⁹F(Ɣ,n)¹⁸F для виробництва вільного ¹⁸F. Досить висока енергія ядер віддачі в цій реакції може досягати 200 кеВ. При підготовці отримання ¹⁸F використовувалася суміш наночастинок CaF₂ , а також хлорат натрію чи кліноптілоліту як донор і акцептор, відповідно, які були опромінені гальмівним випромінюванням з максимальною енергією 13,5 МеВ. Вихід ізотопу ¹⁸F в розчині становив 30,2% від загальної активності зразка. Оцінка виробництва ¹⁸F на електронному прискорювачі потужністю 10 кВт і енергією 25 МеВ може становити до 1 Кі протягом 4 годин. Показано, що фотоядерний метод виробництва ¹⁸F більш ефективний, ніж отримання ¹⁸F на циклотронах. ¹⁸F один из самых важных позитронных излучателей, который обычно используется в позитронной эмиссионной томографии (ПЭТ). Цель нашего исследования состояла в том, чтобы развить метод ядер отдачи в реакции ¹⁹F(Ɣ,n)¹⁸F для производства свободного ¹⁸F. Достаточно высокая энергия ядер отдачи в этой реакции может достигать 200 кэВ. При подготовке получения ¹⁸F использовалась смесь наночастиц CaF₂, а также хлорат натрия или клиноптилолита как донор и акцептор соответственно, которые были облучены тормозным излучением с максимальной энергией 13,5 МэВ. Выход изотопа ¹⁸F в растворе составлял 30,2% от общей активности образца. Оценка производства ¹⁸F на электронном ускорителе мощностью 10 кВт и энергией 25 МэВ может составлять до 1 Ки в течение 4 часов. Показано, что фотоядерный метод производства ¹⁸F более эффективен, чем получение ¹⁸F на циклотронах. 2018 Article Photonuclear production of F-18 / N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2018. — № 3. — С. 146-149. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 28.60.+s; 87.53.Jw http://dspace.nbuv.gov.ua/handle/123456789/147306 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ядерных методов
Применение ядерных методов
spellingShingle Применение ядерных методов
Применение ядерных методов
Dikiy, N.P.
Dovbnya, A.N.
Krasnoselsky, N.V.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Fedorets, I.D.
Photonuclear production of F-18
Вопросы атомной науки и техники
description ¹⁸F is one of the most important positron emitters which are routinely used in the positron emission tomography (PET). The recoil nuclei method in the ¹⁹F(Ɣ,n)¹⁸F reaction was used for the production of ¹⁸F free carrier. The sufficiently high energy of recoil nuclei in this reaction can be up to 200 keV. The mixture of 180 nanometer CaF₂ nanoparticles and an acceptor in the form of a nanoparticle of food salt was irradiated with bremsstrahlung with a maximum energy of 13.5 MeV. Irradiated samples were placed in distilled water to dissolve the sodium chloride. The yield of the ¹⁸F isotope in the solution was 30.2% of the total activity of the sample. The estimation of the ¹⁸F production on an electron accelerator with a power of 10 kW and an energy of 35 MeV can be up to 1 Ci for 4 hours.
format Article
author Dikiy, N.P.
Dovbnya, A.N.
Krasnoselsky, N.V.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Fedorets, I.D.
author_facet Dikiy, N.P.
Dovbnya, A.N.
Krasnoselsky, N.V.
Lyashko, Yu.V.
Medvedeva, E.P.
Medvedev, D.V.
Uvarov, V.L.
Fedorets, I.D.
author_sort Dikiy, N.P.
title Photonuclear production of F-18
title_short Photonuclear production of F-18
title_full Photonuclear production of F-18
title_fullStr Photonuclear production of F-18
title_full_unstemmed Photonuclear production of F-18
title_sort photonuclear production of f-18
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Применение ядерных методов
url http://dspace.nbuv.gov.ua/handle/123456789/147306
citation_txt Photonuclear production of F-18 / N.P. Dikiy, A.N. Dovbnya, N.V. Krasnoselsky, Yu.V. Lyashko, E.P. Medvedeva, D.V. Medvedev, V.L. Uvarov, I.D. Fedorets // Вопросы атомной науки и техники. — 2018. — № 3. — С. 146-149. — Бібліогр.: 16 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT dikiynp photonuclearproductionoff18
AT dovbnyaan photonuclearproductionoff18
AT krasnoselskynv photonuclearproductionoff18
AT lyashkoyuv photonuclearproductionoff18
AT medvedevaep photonuclearproductionoff18
AT medvedevdv photonuclearproductionoff18
AT uvarovvl photonuclearproductionoff18
AT fedoretsid photonuclearproductionoff18
first_indexed 2025-07-11T01:49:50Z
last_indexed 2025-07-11T01:49:50Z
_version_ 1837313389936771072
fulltext ISSN 1562-6016. ВАНТ. 2018. №3(115) 146 PHOTONUCLEAR PRODUCTION OF F-18 N.P. Dikiy 1,3 , A.N. Dovbnya 1 , N.V. Krasnoselsky 2 , Yu.V. Lyashko 1,3 , E.P. Medvedeva 1,3 , D.V. Medvedev 1,3 , V.L. Uvarov 1 , I.D. Fedorets 3 1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2 S.P. Grigorev Institute of Medical Radiology, Kharkov, Ukraine; 3 V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: ndikiy@kipt.kharkov.ua 18 F is one of the most important positron emitters which are routinely used in the positron emission tomography (PET). The recoil nuclei method in the 19 F(,n) 18 F reaction was used for the production of 18 F free carrier. The suffi- ciently high energy of recoil nuclei in this reaction can be up to 200 keV. The mixture of 180 nanometer CaF2 nano- particles and an acceptor in the form of a nanoparticle of food salt was irradiated with bremsstrahlung with a maxi- mum energy of 13.5 MeV. Irradiated samples were placed in distilled water to dissolve the sodium chloride. The yield of the 18 F isotope in the solution was 30.2% of the total activity of the sample. The estimation of the 18 F pro- duction on an electron accelerator with a power of 10 kW and an energy of 35 MeV can be up to 1 Ci for 4 hours. PACS: 28.60.+s; 87.53.Jw INTRODUCTION The advantage of the PET method, in comparison with other methods of instrumental medical diagnostics, is the possibility of obtaining information about the fate of radionuclides in the body that correspond to the basic elements-organogenes included in the composition of biologically significant molecules. Positron emitters are used to label various radiopharmaceuticals. The signifi- cant advantages of PET are realized in the study of cer- ebral blood flow and cerebral blood volume, regional metabolism of carbohydrates and oxygen, in neuro- chemical studies  to obtain data on the density of indi- vidual receptors and their functioning in the healthy and diseased brain of man [1]. To detect abnormalities in the metabolism of oxygen, a positron emitter of 15 О is used. This is important in the treatment of epilepsy, brain tumors, ischemic lesions, etc. To evaluate the neurotransmitter systems, in particu- lar dopamine, a number of radiotracers are used, among which L-DOPA, and its radiofluorinated analogue 18 F-6- fluorideDOPA. To assess the activity of various recep- tor systems, their antagonists are most often used, which are capable of more or less irreversibly binding to them. As radio raisers, isotope analogs of known radiophar- maceuticals are often used: phenothiazines (chlorpramazine), benzamides (raclopride), as well as various benzodiazepines, opiates, acetylcholine deriva- tives, etc. In cardiology, the most popular positron radiators are 13 N in the form of NH3, and 82 Rb in the form of RbCl (for evaluating regional perfusion of the heart muscle) and fatty acids labeled with carbon-11 (for evaluating the regional metabolism of fatty acids) [1]. The most widely used in PET are 11 C, 13 N, 15 O, and 18 F. An important circumstance is that the listed iso- topes, except for 18 F, are isotopes of biogenic elements. Various biomolecules (including simple alcohols, sug- ars, amino acids, steroids, alcaloids and host drugs) can be carried with positron emitters without altering their bio-chemical and physiological activities. We note that the close Van der Waals radii of H and F allow us, with some reservations, to introduce 18 F into labeled com- pounds instead of hydrogen without major disturbances in the geometry of the radiotracer. In addition to widely used isotopes 11 C, 13 N, 15 O, and 18 F, other isotopes are also used, which significantly ex- pands PET capabilities for diagnosis of various diseases (Tabl). The maximum spatial resolution that can be ob- tained by the PET method is limited to the range of posi- trons in the object under study. The values of the positron ranges in water are given in table. As follows from the data in the table, the values of the positron ranges are significantly different, which introduces an error in de- termining the place of the event, which in principle can- not be corrected. It can be seen that the minimum value of the positron range is realized for 18 F. However, for some applications, these isotopes have significant ad- vantages (for example, cardiac studies using 82 Rb). Although 18 F is not a significant element in living organisms, its nuclear properties make its use in label- ling of significant value. At present, in the overwhelm- ing majority of PET centers, the 18 O(p,n) 18 F reaction is used to produce fluorine-18 in the form of a fluoride ion, which occurs when protons irradiated with water enriched with oxygen-18. Most PET use 18 F, which is obtained in the reaction 18 O(p,n) 18 F. Nevertheless, other methods of obtaining 18 F are being developed. Using brake gamma radiation of 140 MeV electrons with an intensity of 80 μA, Brinkman and Wyand [2] attempted to use the 18 F photonuclear reaction of 19 F(,n) 18 F in targets filled with liquid fluorinated hydrocarbons. Depending on the type of hydrocarbon, the activity extracted by water ranged from 11 to 68%. Of the total induced activity. Given the correct choice of the irradiated material, it was possible to achieve activities of 18 F-up to 100 mCi. At the same time, it was shown that the extractable fluoride contains an admixture of radioactive organic fluorinated com- pounds, both used for irradiation, and products of reac- tions of recoil atoms. Due to the strong radioactive de- composition, the mole activity of fluoride did not ex- ceed 0.25 Ci/mmol. In [3], attempts were made to obtain 18 F on a linear electron accelerator, which is used to irradiate cancer patients. The high cost of obtaining 18 F on cyclotrons prompted the appearance of work [4], where studies were made of its production on a linear accelerator of electrons with an energy of 55 MeV. ISSN 1562-6016. ВАНТ. 2018. №3(115) 147 Isotope T1/2, hours Mean and maximum energy -particles, keV (intensity, %) E, keV (intensity, %) R90 of  + , mm 11 C 20.96 385.7, 960.4 (99.77) 511 (199.5) 1.68 13 N 9.97 491.8, 1198.5 (99.80) 511 (199.6) 2.26 15 O 2.037 735.28, 1735.0 (99.9) 511 (199.8) 3.61 18 F 109.77 249.8, 633.5 (96.73) 511 (193.4) 0.94 62 Cu 9.673 772.1, 1763.9 (0.138); 1320.7, 2936.9 (97.60) 511 (196); 1172.7 (0.35) 7.26 64 Cu 12.7 278.2, 653 (17.6); 188.85, 573 (38) 511 (35.2); 1347 (0.55) 1.04 62 Zn 9.255 255.4, 597.5 (8.2) 511 (15.8); 40.8 (22.6); 507.6 (14.8); 548.35 (15.3); 596.6 (26) 0.96 68 Ga 67.71 352.6, 821.7 (1.19); 836.0, 1899 (87.7) 511 (178.4); 1077.3 (3.2) 3.94 75 Br 96.7 514, 1181 (3.6); 601.4, 1376 (3.3); 708.1, 1612 (4.9); 772, 1753 (53); 904, 2040 (4) 511 (150.8); 141.2 (6.6); 286.5 (88); 431.8 (3.97) 3.78 76 Br 16.2 336, 781 (6.3); 427.2, 990 (5.2); 1532, 3382 (25.8); 1800, 3941 (6) 511 (109); 559.2 (74); 657 (15.9); 1853.7 (14.7) 8.35 82 Rb 1.2575 527.7, 1206.7 (0.32); 843.2, 1903 (0.12); 1167.6, 2601 (13.1); 1534.6, 3378 (81.8) 511 (189); 777 (12.5); 1395 (0.47) 7.65 86 Y 14.74 535.4, 1221 (11.9); 681.1, 1545 (5.6); 883.3, 1988 (3.6); 1436.8, 3141 (2.0) 511 (64); 443.1 (16.9); 627.7 (32.6); 703.3 (15.4); 777.4 (23); 1076.6 (82.5); 1153 (31.3); 1920.7 (21.3) 3.34 89 Zr 78.41 395.5, 902.3 (22.74) 511 (45.89); 909.1 (99.86); 1712 (0.86) 1.72 82 Rb 1.2575 527.7, 1206.7 (0.32); 843.2, 1903 (0.12); 1167.6, 2601 (13.1); 1534.6, 3378 (81.8) 511 (189); 777 (12.5); 1395 (0.47) 7.65 94m Tc 52 404.5, 917 (0.92); 639.3, 1446 (0.93); 1094.2, 2439 (67.6) 511 (140.3); 871 (94.2); 1522 (4.5); 1868.7 (5.7) 5.79 110 In 69.1 1014.7, 2260 (60.7) 511 (122.5); 657.75 (97.7) 5.37 124 I 4.176 687.04, 1534.9 (11.7); 974.7, 2137.6 (10.7) 511 (45); 602.7 (62.9); 722.8 (10.36); 1591 (11.15) 4.24 134 La 6.45 946.9, 2104 (1.56); 1224.4, 2709, (62) 511, (127.2); 604.7 (5.04) 6.44 Also note the work of the Polish group, which are developing alternative methods for obtaining 18 F on neutrons [6] and protons [6]. Works on a production of 18 F and neutrons [7, 8] are known. The purpose of the present article is the production of a high specific activity 18 F on the basis of nanoparti- cles of calcium fluoride and the effect of Szilard- Chalmers. RESULTS AND DISCUSSION For the production of 18 F with high specific activity was used Szilard-Chalmers method [9]. Nanoparticles CaF2 and white salt were used as donor and acceptor, respectively. For the concentration of recoil nuclei in among donor (white salt), nanoparticle sizes CaF2, con- taining an activatable element, must be less than or equal to the range of the recoil nuclei (Fig. 1). The evaporation model for compound nuclei pre- dicts that the emitted neutron energy distribution ap- proaches the form of a Maxwell distribution [10, 11]: )exp()( 2  nn n EE constEw  , where θ = [(Eγ  Bn)/a] 1/2 ; Bn – separation energy of neutron; Eγ – bremsstrahlung energy. The constant a definition of the speed of ascending of a density of lev- els of a nucleus at increasing of energy. The experi- mental estimate of this constant is а ≈ A/15 МэВ -1 . However, in light nuclei, a structure is observed in the cross section of the photonuclear reaction (Fig. 2). The cross section for the 19 F(,n) 18 F reaction up to a photon energy of 26 MeV is realized due to a small number of single-particle dipole transitions, which can take place in this nucleus [12]. These properties also appear in the spectra of emitted neutrons. In Fig. 3 shows the spectra of neutrons from the 19 F(,n) 18 F reac- tion, which correspond to transitions in the 18 F nucleus to the ground, excited, and solid states [14 - 16]. It can be seen that the neutron spectrum has a structure that is related to the discrete states of the final nucleus. 0 20 40 60 80 100 0 50 100 150 200 R a n g e 1 8 F i n C a F 2 , n m 18 F ion energy, keV Fig. 1. 18 F ranges in natural calcium fluoride ISSN 1562-6016. ВАНТ. 2018. №3(115) 148 10 20 30 40 50 0,000 0,005 0,010 0,015 c ro s s s e c ti o n , b n E  , MeV 19 F(,n) 18 F Fig. 2. Cross section of reaction 19 F(,n) 18 F [13] Procedure of deriving calcium fluoride in nanosize state was the following: the grinding of calcium fluoride in an agate mortar for a long time, the precipitation of powder in the distilled water. The velocity of subsid- ence of calcium fluoride particles was being determined out of the equation:   9 )(2 2rg V o  , where , o  density of calcium fluoride particles and water, accordingly; g  acceleration of free falling; r  particle radius;   dynamic viscosity of water. After 3.5 hours of precipitation the solution was decanted. A solution of calcium fluoride particles was then precipi- tated for 85 hours. In the obtained sediment were nano- particles of calcium fluoride in the size from 0.5 to 2.5 m. In the second case, a solution of calcium fluo- ride precipitated in the cylinder 434 hours. The superna- tant of a solution of calcium fluoride was then evapo- rated. This allowed obtaining nanoparticles of calcium fluoride with an average size of 180 nm. The mixture of CaF2 nanoparticles and an acceptor in the form of nanoparticles of a food salt was irradiated with bremsstrahlung with a maximum energy of 13.5 MeV. After activation of samples and standards the activi- ty of radioisotopes obtained in reactions 19 F(,n) 18 F has been measured by Ge(Li)-detector with volume 50 cm 3 and with energy resolution 3.2 keV in the area of 1332 keV (Fig. 4). 1 2 3 4 5 6 0 20 40 60 80 100 y ie ld , re l. u n it s E n , MeV GROUND-STATE EXCITED-STATE TOTAL  SUM OF GROUND STATE AND EXCITED-STATE 19 F(,n) 18 F Fig. 3. Photoneutrons from Teflon; pulse height spectra (E (max) = 21 MeV) [16] The estimate of the average energy of neutrons for a gamma radiation with the maximum energy of 13.5 MeV of reaction reaches 3 MeV. Therefore, the average energy of recoil nuclei of 18 F is equal 80 keV. Recoil nuclei 18 F can leave nanoparticles of CaF2 from a depth of 150 nm (see Fig. 1). For the average radius of CaF2 nanoparticles 1.5 m the part of recoil nuclei, which can go out into a solution, is 4.75%. The yield of 18 F out of extractable phase amounted  3.03%. For the average radius of CaF2 nanoparticles 180 nm the part of recoil nuclei, which can go out into a solu- tion, is %. Yield of 18 F out of extractable phase amounted 30.2%. 1000 2000 3000 4000 10 100 1000 10000 number channel c o u n ts 18 F 65 Zn 1116 keV 511 keV Fig. 4. The spectrum of 18 F, Emax = 13.5 MeV The estimation of the 18 F production on an electron accelerator with a power of 10 kW and an energy of 35 MeV can be up to 1 Ci for 4 hours. CONCLUSIONS 1. The possibility of photonuclear production of car- rier free 18 F by using recoil nuclei of calcium fluoride nanoparticles that produced by reaction 19 F(,n) 18 F has been found. 2. The mixture of CaF2 nanoparticles and an accep- tor in the form of a nanoparticle of a food salt was irra- diated by bremsstrahlung with a maximum energy of 13.5 MeV. Irradiated samples were placed in a distilled water to dissolve the sodium chloride. 3. The maximum yield of the 18 F isotope in the solu- tion was 30.2% of the total activity of the sample. 4. The estimation of the 18 F production on an elec- tron accelerator with a power of 10 kW and an energy of 35 MeV can be up to 1 Ci for 4 hours. REFERENCES 1. M.V. Korsakov. Guide to PET Radiochemistry. St. Petersburg: “Theza”, 2002, 180 p. 2. G.A. Brinkman, A. Wyand. Production of [ 18 F] fluo- ride from fluocarbons by the 19 F(,n) 18 F reaction // Appl. Radiat. Isot. 1988, v. 39, p. 1141-1144. 3. N. Psarros, R. Weber. Rapid production of no- carrier-added 18 F  from 2-fluoroaniline via the 19 F(,n) 18 F reaction, using a hospital electron linear accelerator // Appl. Radiat. Isot. 1995, v. 46, p. 123- 124. ISSN 1562-6016. ВАНТ. 2018. №3(115) 149 4. S.S. Bolyshev, L.Z. Dzhilavyan, A.N. Ermakov, et al. // Bull. Russ. Acad. Scien. 2013, v. 77, p. 480-482. 5. R. Mikolajczak, J. Staniszewska, S. Mikolajewski, E. Rurarz. Rapid production of 18 F fluoride from 2- fluoroaniline via the 19 F(n,2n) 18 F reaction using 14 MeV neutrons // Nukleonika. 2002, v. 47(1), p. 13-18. 6. E. Bětak, R. Mikołajczak, J. Staniszewska, et al. Production of 18 F by proton irradiation of C6H6NF and C6H5NF2 // Nukleonika. 2011, v. 56(4), p. 31-41. 7. C.C. Thomas Jr, J.A. Sondel, R.C. Kerns. Produc- tion of carrier-free fluorine-18 // Int. J. Appl. Radiat. Isot. 1965, v. 16, p. 71-74. 8. K. Beg, F. Brown. Production of carrier-free radio- fluorine-18 and determination of its half-life // Int. J. Appl. Radiat. Isot. 1963, v. 14, p. 137-141. 9. L. Szilard, T.A. Chalmers. Detection of neutrons liberated from beryllium by gamma-rays: a new technique for inducing radioactivity // Nature. 1934, v. 134, p. 494-495. 10. V.V. Varlamov, B.S. Ishhanov, I.M. Kapitonov. Photonuclear reactions. Modern status experi- menttal data. Moskow: “University book”, 2008, 304 p. 11. B.S. Ishkhanov, I.M. Kapitonov. The interaction of electromagnetic radiation with atomic nuclei. Mos- kow: “MGU”, 1979, 216 p. 12. P.G.K. Kuo, J.W. Jury, K.G. Neill, et al. Photoneu- tron angular distribution of 19 F // Nucl. Phys. 1989, v. 499A, p. 328-338. 13. https://www-nds.iaea.org/exfor/servlet/E4sMakeE4 14. T. Mori, H. Nishihara, I. Kimura, et al. Measurement and Analysis of Neutron Spectra in Lithium Fluoride and Polytetrafluoroethylene Piles // J. Nucl. Sci. Tech. 1985, v. 22(9), p. 708-722. 15. J. Christopher Curtiss. The use of a 40" scintillation detector to measure ( ,n) and (, 2n) reactions in 19 F. Iowa State University, 1967, 207 p. 16. https://www-nds.iaea.org/exfor/servlet/X4s Article received 05.02.2018 ФОТОЯДЕРНЫЙ МЕТОД ПРОИЗВОДСТВА F-18 Н.П. Дикий, A.Н. Довбня, Н.В. Красносельский, Ю.В. Ляшко, Е.П. Медведева, Д.В. Медведев, В.Л. Уваров, И.Д. Федорец 18 F один из самых важных позитронных излучателей, который обычно используется в позитронной эмиссионной томографии (ПЭТ). Цель нашего исследования состояла в том, чтобы развить метод ядер отда- чи в реакции 19 F(,n) 18 F для производства свободного 18 F. Достаточно высокая энергия ядер отдачи в этой реакции может достигать 200 кэВ. При подготовке получения 18 F использовалась смесь наночастиц CaF2, а также хлорат натрия или клиноптилолита как донор и акцептор соответственно, которые были облучены тормозным излучением с максимальной энергией 13,5 МэВ. Выход изотопа 18 F в растворе составлял 30,2% от общей активности образца. Оценка производства 18 F на электронном ускорителе мощностью 10 кВт и энергией 25 МэВ может составлять до 1 Ки в течение 4 часов. Показано, что фотоядерный метод производ- ства 18 F более эффективен, чем получение 18 F на циклотронах. ФОТОЯДЕРНИЙ МЕТОД ВИРОБНИЦТВА F-18 М.П. Дикий, A.М. Довбня, М.В. Красносельський, Ю.В. Ляшко, О.П. Медведєва, Д.В. Медведєв, В.Л. Уваров, І.Д. Федорець 18 F є один з найважливіших позитронних випромінювачів, який зазвичай використовується в позитронній емісійній томографії (ПЕТ). Мета нашого дослідження полягала в тому, щоб розвинути метод ядер віддачі в реакції 19 F(,n) 18 F для виробництва вільного 18 F. Досить висока енергія ядер віддачі в цій реакції може дося- гати 200 кеВ. При підготовці отримання 18 F використовувалася суміш наночастинок CaF2, а також хлорат натрію чи кліноптілоліту як донор і акцептор, відповідно, які були опромінені гальмівним випромінюванням з максимальною енергією 13,5 МеВ. Вихід ізотопу 18 F в розчині становив 30,2% від загальної активності зразка. Оцінка виробництва 18 F на електронному прискорювачі потужністю 10 кВт і енергією 25 МеВ може становити до 1 Кі протягом 4 годин. Показано, що фотоядерний метод виробництва 18 F більш ефективний, ніж отримання 18 F на циклотронах. http://www.sciencedirect.com/science/article/pii/0020708X6590150X#! http://www.sciencedirect.com/science/article/pii/0020708X6590150X#! https://www-nds.iaea.org/exfor/servlet/X4s