Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture
The ozone decay in air-ethylene mixture was studied in a free space as well as in a chemical reactor with a developed inner surface on which ozone dissociates or absorbs. It is shown that both in the case of ozone decay in free space and in the case of ozone decay in a container with a developed in...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147325 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture / О.V. Manuilenko, D.V. Kudin, A.Ya. Dulphan, V.I. Golota // Вопросы атомной науки и техники. — 2018. — № 4. — С. 139-143. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147325 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1473252019-02-15T01:23:47Z Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture Manuilenko, О.V. Kudin, D.V. Dulphan, A.Ya. Golota, V.I. Плазменно-пучковый разряд, газовый разряд и плазмохимия The ozone decay in air-ethylene mixture was studied in a free space as well as in a chemical reactor with a developed inner surface on which ozone dissociates or absorbs. It is shown that both in the case of ozone decay in free space and in the case of ozone decay in a container with a developed inner surface, there is a range of parameters (initial concentrations of ozone and ethylene, reactor inner surface area) for which the ozone concentration behaves in time as exp(-ωt), i.e. the (pseudo) first-order kinetics of ozone decay take place. Досліджено кінетику розпаду озону в повітряно-етиленовій суміші в необмеженому просторі та у хімічному реакторі з розвиненою внутрішньою поверхнею, на якій озон може розпадатися. Показано, що як у вільному необмеженому просторі, так і в разі розпаду озону в контейнері з розвиненою внутрішньою поверхнею, існує область параметрів (початкові концентрації озону і етилену, площа внутрішньої поверхні реактора), для яких концентрація озону поводить себе у часі як exp(-ωt), що відповідає кінетиці (псевдо) першого порядку Исследована кинетика распада озона в воздушно-этиленовой смеси в неограниченном пространстве и в химическом реакторе с развитой внутренней поверхностью, на которой озон может распадаться. Показано, что как в свободном неограниченном пространстве, так и в случае распада озона в контейнере с развитой внутренней поверхностью, существует область параметров (начальные концентрации озона и этилена, площадь внутренней поверхности реактора), для которых концентрация озона ведет себя во времени как exp(- ωt), что соответствует кинетике (псевдо) первого порядка. 2018 Article Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture / О.V. Manuilenko, D.V. Kudin, A.Ya. Dulphan, V.I. Golota // Вопросы атомной науки и техники. — 2018. — № 4. — С. 139-143. — Бібліогр.: 18 назв. — англ. 1562-6016 PACS: 52.75.-d, 52.77.Fv, 52.80.Hc, 52.90.+z, 81.20.-n http://dspace.nbuv.gov.ua/handle/123456789/147325 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия |
spellingShingle |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия Manuilenko, О.V. Kudin, D.V. Dulphan, A.Ya. Golota, V.I. Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture Вопросы атомной науки и техники |
description |
The ozone decay in air-ethylene mixture was studied in a free space as well as in a chemical reactor with a developed inner surface on which ozone dissociates or absorbs. It is shown that both in the case of ozone decay in free
space and in the case of ozone decay in a container with a developed inner surface, there is a range of parameters
(initial concentrations of ozone and ethylene, reactor inner surface area) for which the ozone concentration behaves
in time as exp(-ωt), i.e. the (pseudo) first-order kinetics of ozone decay take place. |
format |
Article |
author |
Manuilenko, О.V. Kudin, D.V. Dulphan, A.Ya. Golota, V.I. |
author_facet |
Manuilenko, О.V. Kudin, D.V. Dulphan, A.Ya. Golota, V.I. |
author_sort |
Manuilenko, О.V. |
title |
Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture |
title_short |
Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture |
title_full |
Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture |
title_fullStr |
Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture |
title_full_unstemmed |
Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture |
title_sort |
оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147325 |
citation_txt |
Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture / О.V. Manuilenko, D.V. Kudin, A.Ya. Dulphan, V.I. Golota // Вопросы атомной науки и техники. — 2018. — № 4. — С. 139-143. — Бібліогр.: 18 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT manuilenkoov ozonedecayinchemicalreactorwiththedevelopedinnersurfaceairethylenemixture AT kudindv ozonedecayinchemicalreactorwiththedevelopedinnersurfaceairethylenemixture AT dulphanaya ozonedecayinchemicalreactorwiththedevelopedinnersurfaceairethylenemixture AT golotavi ozonedecayinchemicalreactorwiththedevelopedinnersurfaceairethylenemixture |
first_indexed |
2025-07-11T02:15:18Z |
last_indexed |
2025-07-11T02:15:18Z |
_version_ |
1837315027773685760 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №4(116) 139
PLASMA-BEAM DISCHARGE,
DISCHARGE AND PLASMACHEMISTRY
OZONE DECAY IN CHEMICAL REACTOR WITH THE DEVELOPED
INNER SURFACE: AIR-ETHYLENE MIXTURE
О.V. Manuilenko*, D.V. Kudin, A.Ya. Dulphan1, V.I. Golota
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
1National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine
*E-mail: ovm@kipt.kharkov.ua
The ozone decay in air-ethylene mixture was studied in a free space as well as in a chemical reactor with a de-
veloped inner surface on which ozone dissociates or absorbs. It is shown that both in the case of ozone decay in free
space and in the case of ozone decay in a container with a developed inner surface, there is a range of parameters
(initial concentrations of ozone and ethylene, reactor inner surface area) for which the ozone concentration behaves
in time as exp(-ωt), i.e. the (pseudo) first-order kinetics of ozone decay take place.
PACS: 52.75.-d, 52.77.Fv, 52.80.Hc, 52.90.+z, 81.20.-n
INTRODUCTION
As an environmentally friendly oxidant, ozone can
be used in a wide range of technologies in various fields
of human activity, such as agriculture [1], food produc-
tion and storage [2], waste recycling [3 - 5] and other.
The three major problems should be solved for each
ozone based technology: the energy efficient ozone pro-
duction, the ozone delivery (with minimal loss) to the
interaction point, and the chemical interaction of ozone
with the substance to be treated. The first problem can
be solved with the help of barrierless ozonizers [6]
based on the streamer discharge [7 - 10]. The paper is
devoted to the solution of the second and third problem
in food storage.
Fresh fruits and vegetables emit ethylene − one of
plant hormones, which promotes the aging of these fresh
agricultural products. Therefore, ethylene is an undesira-
ble compound when storing agricultural produce. The
traditional method for fresh-keeping of fruits and vegeta-
bles is refrigeration. However, even in refrigeration envi-
ronment, ethylene is released by agricultural products
themselves or other sources. The residual ethylene can
accelerate maturation and corruption of agricultural prod-
ucts and thus it should be wiped away. So, the ethylene
concentration reducing in the containers for storage and
transportation of perishable products is important task for
keeping freshness of fruits and vegetables.
Conventional techniques for ethylene removal in-
clude adsorption, K2MnO4 oxidation, catalytic oxida-
tion, photo-catalysis and some biological methods.
These methods have unavoidable drawbacks: adsorbent
may be damaged because of aerosols, K2MnO4 oxida-
tion and catalytic oxidation are complicated, photo-
catalysis and biological method have low removal rates.
An alternative approach to keep fruits and vegetables
fresh is usage of nonthermal plasma [11 - 14]. The die-
lectric barrier discharge, corona discharge, glow dis-
charge or, in our case, barrierless streamer discharge can
be applied to decompose ethylene and other volatile
organic compounds. This approach has many ad-
vantages: moderate operation conditions (normal tem-
perature and atmospheric pressure), low cost and plasma
reactors compactness. As all these discharges work with
air-ethylene mixture, the ozone is generated. Ozone can
be feeded into the container for the transportation of
perishable products and can serve as an additional reac-
tant for ethylene decomposition. Ozone decay and eth-
ylene decomposition in the free space and in the con-
tainer for the transportation of fruits and vegetables
were investigated in this paper. The loaded container
can be considered as a chemical reactor with a devel-
oped inner surface on which the ozone dissociates or
absorbs. It was found that both in the case of ozone de-
cay in free space and in the case of ozone decay in a
container with a developed inner surface, there is a
range of parameters (initial concentrations of ozone and
ethylene, gas temperature, reactor inner surface area) for
which the ozone concentration behaves in time as exp(-
dt), i.e. the (pseudo) first-order kinetics of ozone decay
take place.
OZONE DECAY IN AIR-ETHYLENE
MIXTURE
The ethylene ozonolysis is proceed via a primary
ozonide (Fig. 1), which then decomposes to give a car-
bonyl product together with a Griegee intermediate [15].
The Criegee intermediate may decay by one of follow-
ing ways [16]: it may be stabilised by a collision with a
third body to give a carbonyl oxide ( 22OCH ), it may
decompose to give OH radicals, and it may react with
the carbonyl product to give a secondary ozonide, which
is unlikely. The secondary ozonide and carbonyl oxide
will react further to yield stable products.
Fig. 1. The ozonolysis of ethylene
mailto:ovm@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2018. №4(116) 140
The ozonolysis of ethylene can be summarized as:
OzOHC
Al
fk
Pr342 ⇒+ , (1)
ImPr 2
Pr
GrCOHOz
Oz
fk
+⇒ , (2)
FSPCOHGr
Gr
fk Im
2Im ⇒+ , (3)
where 342Pr OHCOz = is the primary ozonide,
22Im COHGr = is the Griegee intermediate, and FSP
are the final stable products.
The conventional scheme of ozone decay in air [2 -
4, 17] can be modified to include the ozonolysis of eth-
ylene according to (1) - (3):
ξξ
ξ
ξ
++⇔+ OOO
f
r
k
k
23
, (4)
23 2OOO
O
fk
⇒+ , (5)
FSPAlO
Al
fk*
3 ⇒+ . (6)
In the equation (4) ξ = {N2, O2, H2O, O3, Al=C2H4,
CO2, He, Ar, N2O}. The abbreviation «Al» means al-
kenes − CnH2n, in our case Al = C2H4. )(Tk f
ξ is the rate
constant of the forward reaction. It depends on the tem-
perature T like the rest of the reaction rate constants.
)(Tkr
ξ is the reverse reaction rate constant. In the equa-
tions (5), (6) )(Tk O
f and )(* Tk Al
f are the forward reac-
tion rate constant.
The forward reaction in (4) shows unimolecular
ozone decay. This reaction is not elementary. It consists
of a multi-stage process which includes activation and
decay of the excited molecule through the activated
complex. The reverse reaction is also not elementary. It
flows in two biomolecular stages: formation of excited
ozone with subsequent relaxation. The reaction in (5) is
exothermic. The excess energy is distributed over the
vibrational degrees of freedom of the oxygen molecule.
As a rule, vibrationally excited oxygen relaxes to the
ground state.
The system of kinetic equations for (4) – (6), if ξ =
{N2, O2, H2O, O3, Al=C2H4}, generally is the following:
AlO
Al
fOO
O
frOOfO
O CCkCCkCkCCCkC
dt
dC
3323
3 *−−+−= ∑∑
ξ
ξ
ξ
ξ
ξ
ξ ,
(7)
OO
O
frOOfO
O CCkCkCCCkC
dt
dC
323
2 2+−= ∑∑
ξ
ξ
ξ
ξ
ξ
ξ , (8)
OO
O
frOOfO
O CCkCkCCCkC
dt
dC
323 ∑∑ −−=
ξ
ξ
ξ
ξ
ξ
ξ , (9)
AlO
Al
f
Al CCk
dt
dC
3
*−= , (10)
where )(tCξ is a concentration of ξ. For ξ = {N2, H2O},
the density of particles )(tCξ
may depend on time only
through the initial conditions. Therefore,
2NC = const,
OHC
2
= const. The following equation can be obtained
using the method of steady-state concentrations for O:
∑
∑
+
=
ξ
ξ
ξ
ξ
ξ
ξ
)()()(
)()(
)(
32
3
tCktCktC
tCktC
tC
O
O
frO
fO
O
. (11)
It is convenient to introduce the following notations:
∑=
ξ
ξ
ξ )()(),( tCTkTtF f , ∑=
ξ
ξ
ξ )()(),( tCTkTtG r . (12)
The equations (7), (8) may be presented in a simple
form:
2*
3
32
3
3 2 O
O
O
fO
O
f
AlO
Al
f
O C
CkGC
Fk
CCk
dt
dC
+
−−= , (13)
2
3
32
2 3 O
O
O
fO
O
fO C
CkGC
Fk
dt
dC
+
= . (14)
The numerical estimations of F and G, using the rate
constants of the corresponding reactions from [17], for
the atmospheric pressure and the temperature T ~300 К,
for the mass ozone concentration
3OMC <20 g/m3 and
water concentration OHM C
2
< 25 g/m3, show that the main
input to F will be achieved due to ozone decay at the col-
lision with nitrogen. Ozone collision with oxygen and
water gives the input to F by several times lower. Ozone
collisions with ozone and ethylene give the input by two
orders lower than the ozone decay on nitrogen. This al-
lows highly accurate calculation of F in accordance with
the initial densities of nitrogen, water and oxygen –
F ≈
2
2 )( N
N
f CTk ⋅ + OH
OH
f CTk
2
2 )( ⋅ +
2
2 )( O
O
f CTk ⋅ . A similar
analysis can be carried out for G. As a result, G with high
accuracy, as well as F, does not depend on time and is
defined by the initial bulk densities of nitrogen, water and
oxygen – G ≈
2
2 )( N
N
r CTk ⋅ + OH
OH
r CTk
2
2 )( ⋅ +
2
2 )( O
O
r CTk ⋅ .
The equations (13), (14) and (10) show that in gen-
eral case the ozone decay is described by the variable
order kinetics, from the 1-st to the 2-nd order depending
on the parameters of the problem. If
23 OO
O
f GCCk >>
(low pressure), ozone decay is described by the first
order kinetics:
333
/ OAlOO CCCdtdC βα −−= , where
Al
fk *−=α const= , O
f
O
f kFk /2=β const≈ . In the oppo-
site case, if
23 OO
O
f GCCk << (atmospheric pressure),
ozone decay is described by the second order kinetics:
2
333
/ OAlOO CCCdtdC dα −−= , where
2
/2 O
O
f GCFk=d
const≈ . The latter case is the most interesting; this is
the ozone decay and the ethylene ozonolysis at atmos-
pheric pressure:
2
33
3
OAlO
O CCC
dt
dC
dα −−= ,
AlO
Al CC
dt
dC
3
α−= . (15)
To analyze equations (15) from a bird's eye view,
these equations were solved numerically for the initial
conditions )0()0(
3 AlO CC << (Fig. 2) and )0()0(
3 AlO CC >>
(Fig. 3) and different ratios of the coefficients α and
d : dα ~ , dα << , and dα >> . As can be seen from
Fig. 2, for )0()0(
3 AlO CC << , ozone decays as exp(-ωt).
However, ozone is not sufficient to substantially reduce
the ethylene concentration. It was this case that was
studied experimentally in [18]. In the opposite case (see
Fig. 3), when )0()0(
3 AlO CC >> , the ethylene concentra-
tion can be substantially reduced due to the ethylene
ozonolysis.
The particles decay on the surface can be included in
the equations (7) - (10). To do this, the continuity equa-
tions should be integrated over the volume in the same
way as was done in [2], [4].
ISSN 1562-6016. ВАНТ. 2018. №4(116) 141
First of all, let us take into account the decay on the
wall for atomic oxygen:
OOOO
O
fOOO
O CCCkCGCFC
dt
dC β−−−=
323
, (16)
where VSv OOO /γαβ = is the rate constant of the atomic
oxygen absorption on the surface, α is the coefficient
considering the problem geometry, Ov is the particle
(thermal) velocity, Oγ is the probability of the particle
loss on the surface, V is the vessel volume, and S is an
inner surface.
Fig. 2. Ozone decay and ethylene ozonolysis at atmos-
pheric pressure. )(
3
tCO − ozone concentration vs time,
)(tCAl − ethylene concentration vs time. Initial condi-
tions: )0()0(
3 AlO CC << . Solid black line − dα ~ , dot-
dashed black line − dα << , dashed blue line dα >>
Fig. 3. Ozone decay and ethylene ozonolysis at atmos-
pheric pressure. )(
3
tCO − ozone concentration vs time,
)(tCAl − ethylene concentration vs time. Initial condi-
tions: )0()0(
3 AlO CC >> . Solid black line − dα ~ , dot-
dashed black line − dα << , dashed blue line dα >>
The following equation can be obtained using the
method of stationary concentrations for O:
OO
O
fO
O
O CkGC
FC
tC
β++
=
32
3)( . (17)
The following equations for concentrations of O3, O2
and C2H4 can be obtained from equations (7), (8), (10),
taking into account (17):
3
32
3
333
3
2*
O
OO
O
fO
OO
O
f
AlO
Al
fOO
O FC
CkGC
Ck
CCkC
dt
dC
β
β
β
++
+
−−−= , (18)
3
32
3
22
2
3
O
OO
O
fO
OO
O
f
OO
O FC
CkGC
Ck
C
dt
dC
β
β
β
++
+
+−= , (19)
AlO
Al
fAlAl
Al CCkC
dt
dC
3
*−−= β , (20)
where VSv OOO /
333
γαβ = , VSv OOO /
222
γαβ = , and
VSv AlAlAl /γαβ = are the rate constants of the parti-
cles losses on the surface for ozone, oxygen and eth-
ylene, respectively. Let us consider the limiting cases.
If
3
2 O
O
fO Ck>>β , and
32 O
O
fOO CkGC +>>β , the
equation (18) gives:
3333
3 *
OAlO
Al
fOO
O FCCCkC
dt
dC
−−−= β . (21)
If
3
2 O
O
fO Ck<<β , and
32 O
O
fOO CkGC +<<β , the
equation (18) gives:
32
3
333
3
2
* 2
O
O
fO
O
O
f
AlO
Al
fOO
O
CkGC
FCk
CCkC
dt
dC
+
−−−= β . (22)
If
32 O
O
fO CkGC >> , equation (22) gives:
2
3
333
3
2
* 2
O
O
O
f
AlO
Al
fOO
O
GC
FCk
CCkC
dt
dC
−−−= β . (23)
If
32 O
O
fO CkGC << , equation (22) gives:
3333
3 2*
OAlO
Al
fOO
O FCCCkC
dt
dC
−−−= β . (24)
If
3
2 O
O
fO Ck>>β , and
32 O
O
fOO CkGC +<<β , the
equation (18) gives:
32
3
333
3 *
O
O
fO
OO
AlO
Al
fOO
O
CkGC
FC
CCkC
dt
dC
+
−−−=
β
β . (25)
If
32 O
O
fO CkGC >> , equation (25) gives:
2
3
333
3 *
O
OO
AlO
Al
fOO
O
GC
FC
CCkC
dt
dC β
β −−−= . (26)
If
32 O
O
fO CkGC << , equation (25) gives:
O
f
O
AlO
Al
fOO
O
k
FCCkC
dt
dC ββ −−−=
333
3 * . (27)
If
3
2 O
O
fO Ck<<β , and
32 O
O
fOO CkGC +>>β , the
equation (18) gives:
O
O
O
f
AlO
Al
fOO
O FCk
CCkC
dt
dC
β
β
2
* 3
333
3
2
−−−= . (28)
Thus, the ozone decomposition in an air-ethylene
mixture is described by three types of equations:
2
333
3
OOAlO
O CCCC
dt
dC
dβα −−−= , (29)
333
3
OOAlO
O CCCC
dt
dC
dβα −−−= , (30)
dβα −−−=
33
3
OAlO
O CCC
dt
dC . (31)
The equation for ethylene ozonolysis taking into ac-
count its absorption on the wall has the form:
AlAlO
Al CCC
dt
dC µα −−=
3
. (32)
ISSN 1562-6016. ВАНТ. 2018. №4(116) 142
The most interesting cases are (29), (30) and (32).
These are the ozone decay and the ethylene ozonolysis
at atmospheric pressure. To analyze equations (29), (32)
from a bird's eye view, these equations were solved nu-
merically for the initial conditions )0()0(
3 AlO CC << (see
Fig. 2) and )0()0(
3 AlO CC >> (see Fig. 3) and different
ratios of the coefficients α , β , d , and µ :
µdβα ~~~ , µdβα >>~~ , µdβα <<~~ ,
µdβα ~~ >> , etc. As can be seen from Fig. 4, for
)0()0(
3 AlO CC << , there is a range of parameters where
ozone and ethylene decay as exp(-ωt). Same in the op-
posite case (Fig. 5), when )0()0(
3 AlO CC >> . In both
cases, the ethylene concentration decreases with time
due to decay on the inner surface and ozonolysis.
Fig. 4. Ozone decay and ethylene ozonolysis at atmos-
pheric pressure. )(
3
tCO − ozone concentration vs time,
)(tCAl − ethylene concentration vs time.
Initial conditions: )0()0(
3 AlO CC <<
Fig. 5. Ozone decay and ethylene ozonolysis at atmos-
pheric pressure. )(
3
tCO − ozone concentration vs time,
)(tCAl − ethylene concentration vs time.
Initial conditions: )0()0(
3 AlO CC >>
Analysis (30), (31) gives similar results: there is a
range of parameters for which ozone decays as exp(-ωt).
CONCLUSIONS
The ozone decay in air-ethylene mixture was studied
in a free space as well as in a chemical reactor with a
developed inner surface on which ozone dissociates or
absorbs. The kinetic equations of ozone decay in the
ozone-ethylene mixture at atmospheric pressure were
obtained and analyzed. It is shown that, in the general
case, the ozone decay kinetics is of the order not higher
than the second. However, under certain conditions (the
developed inner reactor surface, high initial ethylene
concentrations), the second-order kinetics degenerates
into first-order kinetics. So, it is shown that both in the
case of ozone decay in free space and in the case of
ozone decay in a container with a developed inner sur-
face, there is a range of parameters (initial concentra-
tions of ozone and ethylene, reactor inner surface area)
for which the ozone concentration behaves in time as
exp(-ωt), i.e. the (pseudo) first-order kinetics of ozone
decay take place.
REFERENCES
1. V.I. Golota, G.V. Тaran, V.P. Petrenkova. Funda-
mentals of ozone-air technology of seeds preparation
for sowing // Academic Life (Nauchnaja Zhizn’).
2014, № 5, p. 62-72.
2. O.V. Manuilenko, V.I. Golota. Ozone decay in
chemical reactor with the developed inner surface //
Problems of Atomic Science and Technology. Series
“Plasma Physics”. 2017, № 1, p. 148-151.
3. V.I. Golota, О.V. Manuilenko, G.V. Тaran,
А.S. Pismenetskii, А.А. Zamuriev, V.А. Benitskaja,
Yu.V. Dotsenko. Ozone disintegration kinetics in the
reactor for decomposition of tyres // Problems of
Atomic Science and Technology. Series “Plasma
Electronics and New Methods of Acceleration”.
2010, № 4, p. 204-209.
4. V.I. Golota, O.V. Manuilenko, G.V. Taran,
Yu.V. Dotsenko, A.S. Pismenetskii, A.A. Zamuriev,
V.A. Benitskaja. Ozone decay in chemical reactor
for ozone-dynamical disintegration of used tyres //
Problems of Atomic Science and Technology. Series
“Plasma Physics”. 2011, № 1, p. 119-121.
5. V.I. Golota, G.V. Taran, A.A. Zamuriev, M.A.
Yegorov, L.L. Mikhalskaia, E.E. Prokhach. Ozone
treatment of hydrazine-containing water solution //
Problems of Atomic Science and Technology. Series
“Plasma Electronics and New Methods of Accelera-
tion”. 2013, № 4, p.325-327.
6. V. Golota, O. Yegorov, V. Mykhaylov, V. Mukhin,
G. Taran, S. Shilo. Ozone generator: USA Patent №
6554486 B2, 2000, 15 p.
7. O.V. Manuilenko, V.I. Golota. Computer simulation
of positive streamer dynamics in strongly non-
uniform electric fields in air. Effect of applied volt-
age on a streamer velocity for different needle radii
// Problems of Atomic Science and Technology. Se-
ries “Plasma Physics”. 2014, № 6, p. 187-190.
8. O.V. Manuilenko. Computer simulation of positive
streamer dynamics in uniform and non-uniform elec-
tric fields in air // Problems of Atomic Science and
Technology. Series “Plasma Electronics and New
Methods of Acceleration”. 2013, № 4, p. 194-199.
9. O.V. Manuilenko, V.I. Golota. Particularities of the
negative streamer propagation in homogeneous and
inhomogeneous electric fields, Computer simulation
// Problems of Atomic Science and Technology. Se-
ries “Plasma Physics”. 2013, № 1, p. 171-173.
10. O.V. Manuilenko, V.I. Golota. Numerical simulation
of negative streamers in strong non-uniform electric
fields in nitrogen. Effect of needles radius and ap-
plied voltage on streamer velocity // Problems of
Atomic Science and Technology. Series “Plasma
ISSN 1562-6016. ВАНТ. 2018. №4(116) 143
Electronics and New Methods of Acceleration”.
2013, № 4, p. 189-193.
11. E.A. Filimonova, R.Kh. Amirov. Simulation of eth-
ylene conversion initiated by a streamer corona in an
air flow // Plasma Physics Report. 2001, v. 27, № 8,
p. 750-756.
12. R. Aerts, X. Tu, W. Van Gaens, J.C. Whitehead,
A. Bogaerts. Gas purification by nonthermal plasma:
a case study of ethylene // Environmental Science
and Technology. 2013, v. 47, № 12, p. 6478-6485.
13. J. Nishimura, K. Takahashi, K. Takaki, S. Koide,
M. Suga, T. Orikasa, Y. Teramoto, T. Uchino. Re-
moval of ethylene and by-products using DBD with
Ag nanoparticle-loaded zeolite for keeping freshness
of fruits and vegetables // Transactions of the Mate-
rials Research Society of Japan. 2016, v. 41, № 1,
p. 41-45.
14. T.J. Ma, W.S. Lan. Ethylene decomposition with a
wire-plate dielectric barrier discharge reactor: pa-
rameters and kinetic study // International Journal of
Environmental Science and Technology. 2015, v. 12,
№ 12, p. 3951-3956.
15. R. Criegee. The course of ozonization of unsaturated
compounds // Record of Chemical Progress. 1957,
v. 18, p. 111-120.
16. E.J. Feltham, M.J. Almond, G. Marston, V.P. Ly,
K.S. Wiltshire. Reactions of alkenes with ozone in
the gas phase: a matrix-isolation study of secondary
ozonides and carbonyl-containing reaction products
// Spectrochimica Acta. Part A. 2000, v. 56, № 12,
p. 2605-2616.
17. V.V. Lunin, M.P. Popovich, S.N. Tkachenko. Physi-
cal chemistry of ozone. М.: “MSU Publishing
house”, 1998.
18. Xu Yongfu, Jia Long, Ge Maofa, Du Lin, Wang
Gengchen, Wang Dianxun. A kinetic study of the
reaction of ozone with ethylene in a smog chamber
under atmospheric conditions // Chinese Science
Bulletin. 2006, v. 51, № 23, p. 2839-2843.
Article received 11.06.2018
РАСПАД ОЗОНА В ХИМИЧЕСКОМ РЕАКТОРЕ С РАЗВИТОЙ ВНУТРЕННЕЙ ПОВЕРХНОСТЬЮ:
ВОЗДУШНО-ЭТИЛЕНОВАЯ СМЕСЬ
О.В. Мануйленко, Д.В. Кудин, А.Я. Дульфан, В.И. Голота
Исследована кинетика распада озона в воздушно-этиленовой смеси в неограниченном пространстве и в
химическом реакторе с развитой внутренней поверхностью, на которой озон может распадаться. Показано,
что как в свободном неограниченном пространстве, так и в случае распада озона в контейнере с развитой
внутренней поверхностью, существует область параметров (начальные концентрации озона и этилена, пло-
щадь внутренней поверхности реактора), для которых концентрация озона ведет себя во времени как exp(-
ωt), что соответствует кинетике (псевдо) первого порядка.
РОЗПАД ОЗОНУ В ХІМІЧНОМУ РЕАКТОРІ З РОЗВИНЕНОЮ ВНУТРІШНЬОЮ ПОВЕРХНЕЮ:
ПОВІТРЯНО-ЕТИЛЕНОВА СУМІШ
О.В. Мануйленко, Д.В. Кудін, Г.Я. Дульфан, В.І. Голота
Досліджено кінетику розпаду озону в повітряно-етиленовій суміші в необмеженому просторі та у хіміч-
ному реакторі з розвиненою внутрішньою поверхнею, на якій озон може розпадатися. Показано, що як у ві-
льному необмеженому просторі, так і в разі розпаду озону в контейнері з розвиненою внутрішньою поверх-
нею, існує область параметрів (початкові концентрації озону і етилену, площа внутрішньої поверхні реакто-
ра), для яких концентрація озону поводить себе у часі як exp(-ωt), що відповідає кінетиці (псевдо) першого
порядку.
INTRODuCTION
OZONE DECAY IN AIR-ETHYLENE MIXTURE
CONCLUSIONS
REFERENCES
|