Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture

The ozone decay in air-ethylene mixture was studied in a free space as well as in a chemical reactor with a developed inner surface on which ozone dissociates or absorbs. It is shown that both in the case of ozone decay in free space and in the case of ozone decay in a container with a developed in...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Manuilenko, О.V., Kudin, D.V., Dulphan, A.Ya., Golota, V.I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147325
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture / О.V. Manuilenko, D.V. Kudin, A.Ya. Dulphan, V.I. Golota // Вопросы атомной науки и техники. — 2018. — № 4. — С. 139-143. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147325
record_format dspace
spelling irk-123456789-1473252019-02-15T01:23:47Z Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture Manuilenko, О.V. Kudin, D.V. Dulphan, A.Ya. Golota, V.I. Плазменно-пучковый разряд, газовый разряд и плазмохимия The ozone decay in air-ethylene mixture was studied in a free space as well as in a chemical reactor with a developed inner surface on which ozone dissociates or absorbs. It is shown that both in the case of ozone decay in free space and in the case of ozone decay in a container with a developed inner surface, there is a range of parameters (initial concentrations of ozone and ethylene, reactor inner surface area) for which the ozone concentration behaves in time as exp(-ωt), i.e. the (pseudo) first-order kinetics of ozone decay take place. Досліджено кінетику розпаду озону в повітряно-етиленовій суміші в необмеженому просторі та у хімічному реакторі з розвиненою внутрішньою поверхнею, на якій озон може розпадатися. Показано, що як у вільному необмеженому просторі, так і в разі розпаду озону в контейнері з розвиненою внутрішньою поверхнею, існує область параметрів (початкові концентрації озону і етилену, площа внутрішньої поверхні реактора), для яких концентрація озону поводить себе у часі як exp(-ωt), що відповідає кінетиці (псевдо) першого порядку Исследована кинетика распада озона в воздушно-этиленовой смеси в неограниченном пространстве и в химическом реакторе с развитой внутренней поверхностью, на которой озон может распадаться. Показано, что как в свободном неограниченном пространстве, так и в случае распада озона в контейнере с развитой внутренней поверхностью, существует область параметров (начальные концентрации озона и этилена, площадь внутренней поверхности реактора), для которых концентрация озона ведет себя во времени как exp(- ωt), что соответствует кинетике (псевдо) первого порядка. 2018 Article Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture / О.V. Manuilenko, D.V. Kudin, A.Ya. Dulphan, V.I. Golota // Вопросы атомной науки и техники. — 2018. — № 4. — С. 139-143. — Бібліогр.: 18 назв. — англ. 1562-6016 PACS: 52.75.-d, 52.77.Fv, 52.80.Hc, 52.90.+z, 81.20.-n http://dspace.nbuv.gov.ua/handle/123456789/147325 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Manuilenko, О.V.
Kudin, D.V.
Dulphan, A.Ya.
Golota, V.I.
Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture
Вопросы атомной науки и техники
description The ozone decay in air-ethylene mixture was studied in a free space as well as in a chemical reactor with a developed inner surface on which ozone dissociates or absorbs. It is shown that both in the case of ozone decay in free space and in the case of ozone decay in a container with a developed inner surface, there is a range of parameters (initial concentrations of ozone and ethylene, reactor inner surface area) for which the ozone concentration behaves in time as exp(-ωt), i.e. the (pseudo) first-order kinetics of ozone decay take place.
format Article
author Manuilenko, О.V.
Kudin, D.V.
Dulphan, A.Ya.
Golota, V.I.
author_facet Manuilenko, О.V.
Kudin, D.V.
Dulphan, A.Ya.
Golota, V.I.
author_sort Manuilenko, О.V.
title Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture
title_short Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture
title_full Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture
title_fullStr Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture
title_full_unstemmed Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture
title_sort оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url http://dspace.nbuv.gov.ua/handle/123456789/147325
citation_txt Оzone decay in chemical reactor with the developed inner surface: air-ethylene mixture / О.V. Manuilenko, D.V. Kudin, A.Ya. Dulphan, V.I. Golota // Вопросы атомной науки и техники. — 2018. — № 4. — С. 139-143. — Бібліогр.: 18 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT manuilenkoov ozonedecayinchemicalreactorwiththedevelopedinnersurfaceairethylenemixture
AT kudindv ozonedecayinchemicalreactorwiththedevelopedinnersurfaceairethylenemixture
AT dulphanaya ozonedecayinchemicalreactorwiththedevelopedinnersurfaceairethylenemixture
AT golotavi ozonedecayinchemicalreactorwiththedevelopedinnersurfaceairethylenemixture
first_indexed 2025-07-11T02:15:18Z
last_indexed 2025-07-11T02:15:18Z
_version_ 1837315027773685760
fulltext ISSN 1562-6016. ВАНТ. 2018. №4(116) 139 PLASMA-BEAM DISCHARGE, DISCHARGE AND PLASMACHEMISTRY OZONE DECAY IN CHEMICAL REACTOR WITH THE DEVELOPED INNER SURFACE: AIR-ETHYLENE MIXTURE О.V. Manuilenko*, D.V. Kudin, A.Ya. Dulphan1, V.I. Golota National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine 1National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine *E-mail: ovm@kipt.kharkov.ua The ozone decay in air-ethylene mixture was studied in a free space as well as in a chemical reactor with a de- veloped inner surface on which ozone dissociates or absorbs. It is shown that both in the case of ozone decay in free space and in the case of ozone decay in a container with a developed inner surface, there is a range of parameters (initial concentrations of ozone and ethylene, reactor inner surface area) for which the ozone concentration behaves in time as exp(-ωt), i.e. the (pseudo) first-order kinetics of ozone decay take place. PACS: 52.75.-d, 52.77.Fv, 52.80.Hc, 52.90.+z, 81.20.-n INTRODUCTION As an environmentally friendly oxidant, ozone can be used in a wide range of technologies in various fields of human activity, such as agriculture [1], food produc- tion and storage [2], waste recycling [3 - 5] and other. The three major problems should be solved for each ozone based technology: the energy efficient ozone pro- duction, the ozone delivery (with minimal loss) to the interaction point, and the chemical interaction of ozone with the substance to be treated. The first problem can be solved with the help of barrierless ozonizers [6] based on the streamer discharge [7 - 10]. The paper is devoted to the solution of the second and third problem in food storage. Fresh fruits and vegetables emit ethylene − one of plant hormones, which promotes the aging of these fresh agricultural products. Therefore, ethylene is an undesira- ble compound when storing agricultural produce. The traditional method for fresh-keeping of fruits and vegeta- bles is refrigeration. However, even in refrigeration envi- ronment, ethylene is released by agricultural products themselves or other sources. The residual ethylene can accelerate maturation and corruption of agricultural prod- ucts and thus it should be wiped away. So, the ethylene concentration reducing in the containers for storage and transportation of perishable products is important task for keeping freshness of fruits and vegetables. Conventional techniques for ethylene removal in- clude adsorption, K2MnO4 oxidation, catalytic oxida- tion, photo-catalysis and some biological methods. These methods have unavoidable drawbacks: adsorbent may be damaged because of aerosols, K2MnO4 oxida- tion and catalytic oxidation are complicated, photo- catalysis and biological method have low removal rates. An alternative approach to keep fruits and vegetables fresh is usage of nonthermal plasma [11 - 14]. The die- lectric barrier discharge, corona discharge, glow dis- charge or, in our case, barrierless streamer discharge can be applied to decompose ethylene and other volatile organic compounds. This approach has many ad- vantages: moderate operation conditions (normal tem- perature and atmospheric pressure), low cost and plasma reactors compactness. As all these discharges work with air-ethylene mixture, the ozone is generated. Ozone can be feeded into the container for the transportation of perishable products and can serve as an additional reac- tant for ethylene decomposition. Ozone decay and eth- ylene decomposition in the free space and in the con- tainer for the transportation of fruits and vegetables were investigated in this paper. The loaded container can be considered as a chemical reactor with a devel- oped inner surface on which the ozone dissociates or absorbs. It was found that both in the case of ozone de- cay in free space and in the case of ozone decay in a container with a developed inner surface, there is a range of parameters (initial concentrations of ozone and ethylene, gas temperature, reactor inner surface area) for which the ozone concentration behaves in time as exp(- dt), i.e. the (pseudo) first-order kinetics of ozone decay take place. OZONE DECAY IN AIR-ETHYLENE MIXTURE The ethylene ozonolysis is proceed via a primary ozonide (Fig. 1), which then decomposes to give a car- bonyl product together with a Griegee intermediate [15]. The Criegee intermediate may decay by one of follow- ing ways [16]: it may be stabilised by a collision with a third body to give a carbonyl oxide ( 22OCH ), it may decompose to give OH radicals, and it may react with the carbonyl product to give a secondary ozonide, which is unlikely. The secondary ozonide and carbonyl oxide will react further to yield stable products. Fig. 1. The ozonolysis of ethylene mailto:ovm@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2018. №4(116) 140 The ozonolysis of ethylene can be summarized as: OzOHC Al fk Pr342 ⇒+ , (1) ImPr 2 Pr GrCOHOz Oz fk +⇒ , (2) FSPCOHGr Gr fk Im 2Im ⇒+ , (3) where 342Pr OHCOz = is the primary ozonide, 22Im COHGr = is the Griegee intermediate, and FSP are the final stable products. The conventional scheme of ozone decay in air [2 - 4, 17] can be modified to include the ozonolysis of eth- ylene according to (1) - (3): ξξ ξ ξ ++⇔+ OOO f r k k 23 , (4) 23 2OOO O fk ⇒+ , (5) FSPAlO Al fk* 3 ⇒+ . (6) In the equation (4) ξ = {N2, O2, H2O, O3, Al=C2H4, CO2, He, Ar, N2O}. The abbreviation «Al» means al- kenes − CnH2n, in our case Al = C2H4. )(Tk f ξ is the rate constant of the forward reaction. It depends on the tem- perature T like the rest of the reaction rate constants. )(Tkr ξ is the reverse reaction rate constant. In the equa- tions (5), (6) )(Tk O f and )(* Tk Al f are the forward reac- tion rate constant. The forward reaction in (4) shows unimolecular ozone decay. This reaction is not elementary. It consists of a multi-stage process which includes activation and decay of the excited molecule through the activated complex. The reverse reaction is also not elementary. It flows in two biomolecular stages: formation of excited ozone with subsequent relaxation. The reaction in (5) is exothermic. The excess energy is distributed over the vibrational degrees of freedom of the oxygen molecule. As a rule, vibrationally excited oxygen relaxes to the ground state. The system of kinetic equations for (4) – (6), if ξ = {N2, O2, H2O, O3, Al=C2H4}, generally is the following: AlO Al fOO O frOOfO O CCkCCkCkCCCkC dt dC 3323 3 *−−+−= ∑∑ ξ ξ ξ ξ ξ ξ , (7) OO O frOOfO O CCkCkCCCkC dt dC 323 2 2+−= ∑∑ ξ ξ ξ ξ ξ ξ , (8) OO O frOOfO O CCkCkCCCkC dt dC 323 ∑∑ −−= ξ ξ ξ ξ ξ ξ , (9) AlO Al f Al CCk dt dC 3 *−= , (10) where )(tCξ is a concentration of ξ. For ξ = {N2, H2O}, the density of particles )(tCξ may depend on time only through the initial conditions. Therefore, 2NC = const, OHC 2 = const. The following equation can be obtained using the method of steady-state concentrations for O: ∑ ∑ + = ξ ξ ξ ξ ξ ξ )()()( )()( )( 32 3 tCktCktC tCktC tC O O frO fO O . (11) It is convenient to introduce the following notations: ∑= ξ ξ ξ )()(),( tCTkTtF f , ∑= ξ ξ ξ )()(),( tCTkTtG r . (12) The equations (7), (8) may be presented in a simple form: 2* 3 32 3 3 2 O O O fO O f AlO Al f O C CkGC Fk CCk dt dC + −−= , (13) 2 3 32 2 3 O O O fO O fO C CkGC Fk dt dC + = . (14) The numerical estimations of F and G, using the rate constants of the corresponding reactions from [17], for the atmospheric pressure and the temperature T ~300 К, for the mass ozone concentration 3OMC <20 g/m3 and water concentration OHM C 2 < 25 g/m3, show that the main input to F will be achieved due to ozone decay at the col- lision with nitrogen. Ozone collision with oxygen and water gives the input to F by several times lower. Ozone collisions with ozone and ethylene give the input by two orders lower than the ozone decay on nitrogen. This al- lows highly accurate calculation of F in accordance with the initial densities of nitrogen, water and oxygen – F ≈ 2 2 )( N N f CTk ⋅ + OH OH f CTk 2 2 )( ⋅ + 2 2 )( O O f CTk ⋅ . A similar analysis can be carried out for G. As a result, G with high accuracy, as well as F, does not depend on time and is defined by the initial bulk densities of nitrogen, water and oxygen – G ≈ 2 2 )( N N r CTk ⋅ + OH OH r CTk 2 2 )( ⋅ + 2 2 )( O O r CTk ⋅ . The equations (13), (14) and (10) show that in gen- eral case the ozone decay is described by the variable order kinetics, from the 1-st to the 2-nd order depending on the parameters of the problem. If 23 OO O f GCCk >> (low pressure), ozone decay is described by the first order kinetics: 333 / OAlOO CCCdtdC βα −−= , where Al fk *−=α const= , O f O f kFk /2=β const≈ . In the oppo- site case, if 23 OO O f GCCk << (atmospheric pressure), ozone decay is described by the second order kinetics: 2 333 / OAlOO CCCdtdC dα −−= , where 2 /2 O O f GCFk=d const≈ . The latter case is the most interesting; this is the ozone decay and the ethylene ozonolysis at atmos- pheric pressure: 2 33 3 OAlO O CCC dt dC dα −−= , AlO Al CC dt dC 3 α−= . (15) To analyze equations (15) from a bird's eye view, these equations were solved numerically for the initial conditions )0()0( 3 AlO CC << (Fig. 2) and )0()0( 3 AlO CC >> (Fig. 3) and different ratios of the coefficients α and d : dα ~ , dα << , and dα >> . As can be seen from Fig. 2, for )0()0( 3 AlO CC << , ozone decays as exp(-ωt). However, ozone is not sufficient to substantially reduce the ethylene concentration. It was this case that was studied experimentally in [18]. In the opposite case (see Fig. 3), when )0()0( 3 AlO CC >> , the ethylene concentra- tion can be substantially reduced due to the ethylene ozonolysis. The particles decay on the surface can be included in the equations (7) - (10). To do this, the continuity equa- tions should be integrated over the volume in the same way as was done in [2], [4]. ISSN 1562-6016. ВАНТ. 2018. №4(116) 141 First of all, let us take into account the decay on the wall for atomic oxygen: OOOO O fOOO O CCCkCGCFC dt dC β−−−= 323 , (16) where VSv OOO /γαβ = is the rate constant of the atomic oxygen absorption on the surface, α is the coefficient considering the problem geometry, Ov is the particle (thermal) velocity, Oγ is the probability of the particle loss on the surface, V is the vessel volume, and S is an inner surface. Fig. 2. Ozone decay and ethylene ozonolysis at atmos- pheric pressure. )( 3 tCO − ozone concentration vs time, )(tCAl − ethylene concentration vs time. Initial condi- tions: )0()0( 3 AlO CC << . Solid black line − dα ~ , dot- dashed black line − dα << , dashed blue line dα >> Fig. 3. Ozone decay and ethylene ozonolysis at atmos- pheric pressure. )( 3 tCO − ozone concentration vs time, )(tCAl − ethylene concentration vs time. Initial condi- tions: )0()0( 3 AlO CC >> . Solid black line − dα ~ , dot- dashed black line − dα << , dashed blue line dα >> The following equation can be obtained using the method of stationary concentrations for O: OO O fO O O CkGC FC tC β++ = 32 3)( . (17) The following equations for concentrations of O3, O2 and C2H4 can be obtained from equations (7), (8), (10), taking into account (17): 3 32 3 333 3 2* O OO O fO OO O f AlO Al fOO O FC CkGC Ck CCkC dt dC β β β ++ + −−−= , (18) 3 32 3 22 2 3 O OO O fO OO O f OO O FC CkGC Ck C dt dC β β β ++ + +−= , (19) AlO Al fAlAl Al CCkC dt dC 3 *−−= β , (20) where VSv OOO / 333 γαβ = , VSv OOO / 222 γαβ = , and VSv AlAlAl /γαβ = are the rate constants of the parti- cles losses on the surface for ozone, oxygen and eth- ylene, respectively. Let us consider the limiting cases. If 3 2 O O fO Ck>>β , and 32 O O fOO CkGC +>>β , the equation (18) gives: 3333 3 * OAlO Al fOO O FCCCkC dt dC −−−= β . (21) If 3 2 O O fO Ck<<β , and 32 O O fOO CkGC +<<β , the equation (18) gives: 32 3 333 3 2 * 2 O O fO O O f AlO Al fOO O CkGC FCk CCkC dt dC + −−−= β . (22) If 32 O O fO CkGC >> , equation (22) gives: 2 3 333 3 2 * 2 O O O f AlO Al fOO O GC FCk CCkC dt dC −−−= β . (23) If 32 O O fO CkGC << , equation (22) gives: 3333 3 2* OAlO Al fOO O FCCCkC dt dC −−−= β . (24) If 3 2 O O fO Ck>>β , and 32 O O fOO CkGC +<<β , the equation (18) gives: 32 3 333 3 * O O fO OO AlO Al fOO O CkGC FC CCkC dt dC + −−−= β β . (25) If 32 O O fO CkGC >> , equation (25) gives: 2 3 333 3 * O OO AlO Al fOO O GC FC CCkC dt dC β β −−−= . (26) If 32 O O fO CkGC << , equation (25) gives: O f O AlO Al fOO O k FCCkC dt dC ββ −−−= 333 3 * . (27) If 3 2 O O fO Ck<<β , and 32 O O fOO CkGC +>>β , the equation (18) gives: O O O f AlO Al fOO O FCk CCkC dt dC β β 2 * 3 333 3 2 −−−= . (28) Thus, the ozone decomposition in an air-ethylene mixture is described by three types of equations: 2 333 3 OOAlO O CCCC dt dC dβα −−−= , (29) 333 3 OOAlO O CCCC dt dC dβα −−−= , (30) dβα −−−= 33 3 OAlO O CCC dt dC . (31) The equation for ethylene ozonolysis taking into ac- count its absorption on the wall has the form: AlAlO Al CCC dt dC µα −−= 3 . (32) ISSN 1562-6016. ВАНТ. 2018. №4(116) 142 The most interesting cases are (29), (30) and (32). These are the ozone decay and the ethylene ozonolysis at atmospheric pressure. To analyze equations (29), (32) from a bird's eye view, these equations were solved nu- merically for the initial conditions )0()0( 3 AlO CC << (see Fig. 2) and )0()0( 3 AlO CC >> (see Fig. 3) and different ratios of the coefficients α , β , d , and µ : µdβα ~~~ , µdβα >>~~ , µdβα <<~~ , µdβα ~~ >> , etc. As can be seen from Fig. 4, for )0()0( 3 AlO CC << , there is a range of parameters where ozone and ethylene decay as exp(-ωt). Same in the op- posite case (Fig. 5), when )0()0( 3 AlO CC >> . In both cases, the ethylene concentration decreases with time due to decay on the inner surface and ozonolysis. Fig. 4. Ozone decay and ethylene ozonolysis at atmos- pheric pressure. )( 3 tCO − ozone concentration vs time, )(tCAl − ethylene concentration vs time. Initial conditions: )0()0( 3 AlO CC << Fig. 5. Ozone decay and ethylene ozonolysis at atmos- pheric pressure. )( 3 tCO − ozone concentration vs time, )(tCAl − ethylene concentration vs time. Initial conditions: )0()0( 3 AlO CC >> Analysis (30), (31) gives similar results: there is a range of parameters for which ozone decays as exp(-ωt). CONCLUSIONS The ozone decay in air-ethylene mixture was studied in a free space as well as in a chemical reactor with a developed inner surface on which ozone dissociates or absorbs. The kinetic equations of ozone decay in the ozone-ethylene mixture at atmospheric pressure were obtained and analyzed. It is shown that, in the general case, the ozone decay kinetics is of the order not higher than the second. However, under certain conditions (the developed inner reactor surface, high initial ethylene concentrations), the second-order kinetics degenerates into first-order kinetics. So, it is shown that both in the case of ozone decay in free space and in the case of ozone decay in a container with a developed inner sur- face, there is a range of parameters (initial concentra- tions of ozone and ethylene, reactor inner surface area) for which the ozone concentration behaves in time as exp(-ωt), i.e. the (pseudo) first-order kinetics of ozone decay take place. REFERENCES 1. V.I. Golota, G.V. Тaran, V.P. Petrenkova. Funda- mentals of ozone-air technology of seeds preparation for sowing // Academic Life (Nauchnaja Zhizn’). 2014, № 5, p. 62-72. 2. O.V. Manuilenko, V.I. Golota. Ozone decay in chemical reactor with the developed inner surface // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2017, № 1, p. 148-151. 3. V.I. Golota, О.V. Manuilenko, G.V. Тaran, А.S. Pismenetskii, А.А. Zamuriev, V.А. Benitskaja, Yu.V. Dotsenko. Ozone disintegration kinetics in the reactor for decomposition of tyres // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2010, № 4, p. 204-209. 4. V.I. Golota, O.V. Manuilenko, G.V. Taran, Yu.V. Dotsenko, A.S. Pismenetskii, A.A. Zamuriev, V.A. Benitskaja. Ozone decay in chemical reactor for ozone-dynamical disintegration of used tyres // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2011, № 1, p. 119-121. 5. V.I. Golota, G.V. Taran, A.A. Zamuriev, M.A. Yegorov, L.L. Mikhalskaia, E.E. Prokhach. Ozone treatment of hydrazine-containing water solution // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Accelera- tion”. 2013, № 4, p.325-327. 6. V. Golota, O. Yegorov, V. Mykhaylov, V. Mukhin, G. Taran, S. Shilo. Ozone generator: USA Patent № 6554486 B2, 2000, 15 p. 7. O.V. Manuilenko, V.I. Golota. Computer simulation of positive streamer dynamics in strongly non- uniform electric fields in air. Effect of applied volt- age on a streamer velocity for different needle radii // Problems of Atomic Science and Technology. Se- ries “Plasma Physics”. 2014, № 6, p. 187-190. 8. O.V. Manuilenko. Computer simulation of positive streamer dynamics in uniform and non-uniform elec- tric fields in air // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2013, № 4, p. 194-199. 9. O.V. Manuilenko, V.I. Golota. Particularities of the negative streamer propagation in homogeneous and inhomogeneous electric fields, Computer simulation // Problems of Atomic Science and Technology. Se- ries “Plasma Physics”. 2013, № 1, p. 171-173. 10. O.V. Manuilenko, V.I. Golota. Numerical simulation of negative streamers in strong non-uniform electric fields in nitrogen. Effect of needles radius and ap- plied voltage on streamer velocity // Problems of Atomic Science and Technology. Series “Plasma ISSN 1562-6016. ВАНТ. 2018. №4(116) 143 Electronics and New Methods of Acceleration”. 2013, № 4, p. 189-193. 11. E.A. Filimonova, R.Kh. Amirov. Simulation of eth- ylene conversion initiated by a streamer corona in an air flow // Plasma Physics Report. 2001, v. 27, № 8, p. 750-756. 12. R. Aerts, X. Tu, W. Van Gaens, J.C. Whitehead, A. Bogaerts. Gas purification by nonthermal plasma: a case study of ethylene // Environmental Science and Technology. 2013, v. 47, № 12, p. 6478-6485. 13. J. Nishimura, K. Takahashi, K. Takaki, S. Koide, M. Suga, T. Orikasa, Y. Teramoto, T. Uchino. Re- moval of ethylene and by-products using DBD with Ag nanoparticle-loaded zeolite for keeping freshness of fruits and vegetables // Transactions of the Mate- rials Research Society of Japan. 2016, v. 41, № 1, p. 41-45. 14. T.J. Ma, W.S. Lan. Ethylene decomposition with a wire-plate dielectric barrier discharge reactor: pa- rameters and kinetic study // International Journal of Environmental Science and Technology. 2015, v. 12, № 12, p. 3951-3956. 15. R. Criegee. The course of ozonization of unsaturated compounds // Record of Chemical Progress. 1957, v. 18, p. 111-120. 16. E.J. Feltham, M.J. Almond, G. Marston, V.P. Ly, K.S. Wiltshire. Reactions of alkenes with ozone in the gas phase: a matrix-isolation study of secondary ozonides and carbonyl-containing reaction products // Spectrochimica Acta. Part A. 2000, v. 56, № 12, p. 2605-2616. 17. V.V. Lunin, M.P. Popovich, S.N. Tkachenko. Physi- cal chemistry of ozone. М.: “MSU Publishing house”, 1998. 18. Xu Yongfu, Jia Long, Ge Maofa, Du Lin, Wang Gengchen, Wang Dianxun. A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions // Chinese Science Bulletin. 2006, v. 51, № 23, p. 2839-2843. Article received 11.06.2018 РАСПАД ОЗОНА В ХИМИЧЕСКОМ РЕАКТОРЕ С РАЗВИТОЙ ВНУТРЕННЕЙ ПОВЕРХНОСТЬЮ: ВОЗДУШНО-ЭТИЛЕНОВАЯ СМЕСЬ О.В. Мануйленко, Д.В. Кудин, А.Я. Дульфан, В.И. Голота Исследована кинетика распада озона в воздушно-этиленовой смеси в неограниченном пространстве и в химическом реакторе с развитой внутренней поверхностью, на которой озон может распадаться. Показано, что как в свободном неограниченном пространстве, так и в случае распада озона в контейнере с развитой внутренней поверхностью, существует область параметров (начальные концентрации озона и этилена, пло- щадь внутренней поверхности реактора), для которых концентрация озона ведет себя во времени как exp(- ωt), что соответствует кинетике (псевдо) первого порядка. РОЗПАД ОЗОНУ В ХІМІЧНОМУ РЕАКТОРІ З РОЗВИНЕНОЮ ВНУТРІШНЬОЮ ПОВЕРХНЕЮ: ПОВІТРЯНО-ЕТИЛЕНОВА СУМІШ О.В. Мануйленко, Д.В. Кудін, Г.Я. Дульфан, В.І. Голота Досліджено кінетику розпаду озону в повітряно-етиленовій суміші в необмеженому просторі та у хіміч- ному реакторі з розвиненою внутрішньою поверхнею, на якій озон може розпадатися. Показано, що як у ві- льному необмеженому просторі, так і в разі розпаду озону в контейнері з розвиненою внутрішньою поверх- нею, існує область параметрів (початкові концентрації озону і етилену, площа внутрішньої поверхні реакто- ра), для яких концентрація озону поводить себе у часі як exp(-ωt), що відповідає кінетиці (псевдо) першого порядку. INTRODuCTION OZONE DECAY IN AIR-ETHYLENE MIXTURE CONCLUSIONS REFERENCES