Decomposition of ethelene in low temperature plasma of barrierless discharge

The experimental setup for investigation of conversion the ethylene impurity in the air on the basis of automated container systems, which using for storing and transporting vegetables and fruits, was developed and tested. The high efficiency of using a barrierless gas discharge to conversion the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Golota, V.I., Kudin, D.V., Manuilenko, O.V., Taran, G.V., Zavada, L.M., Yegorov, M.O., Khmelevskaya, V.F.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147342
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Decomposition of ethelene in low temperature plasma of barrierless discharge / V.I. Golota, D.V. Kudin, O.V. Manuilenko, G.V. Taran, L.M. Zavada, M.O. Yegorov, V.F. Khmelevskaya // Вопросы атомной науки и техники. — 2018. — № 4. — С. 160-163. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147342
record_format dspace
spelling irk-123456789-1473422019-02-15T01:23:55Z Decomposition of ethelene in low temperature plasma of barrierless discharge Golota, V.I. Kudin, D.V. Manuilenko, O.V. Taran, G.V. Zavada, L.M. Yegorov, M.O. Khmelevskaya, V.F. Плазменно-пучковый разряд, газовый разряд и плазмохимия The experimental setup for investigation of conversion the ethylene impurity in the air on the basis of automated container systems, which using for storing and transporting vegetables and fruits, was developed and tested. The high efficiency of using a barrierless gas discharge to conversion the ethylene impurity in the air experimentally confirmed. Розроблено та протестовано експериментальний стенд для дослідження розкладання домішки етилену в повітрі на базі систем автоматизованого контейнера, що використовується для зберігання та транспортування овочів та фруктів. Експериментально підтверджено високу ефективність використання безбар’єрного газового розряду для окиснення домішки етилену в повітрі. Разработано и протестировано экспериментальный стенд для исследования разложения примеси этилена в воздухе на базе систем автоматизированного контейнера, который используется для хранения и транспортировки фруктов и овощей. Экспериментально подтверждена высокая эффективность использования безбарьерного газового разряда для окисления примеси этилена в воздухе. 2018 Article Decomposition of ethelene in low temperature plasma of barrierless discharge / V.I. Golota, D.V. Kudin, O.V. Manuilenko, G.V. Taran, L.M. Zavada, M.O. Yegorov, V.F. Khmelevskaya // Вопросы атомной науки и техники. — 2018. — № 4. — С. 160-163. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.75.-d, 52.77.-j, 52.80.Hc, 52.90.+z, 82.33.Xj http://dspace.nbuv.gov.ua/handle/123456789/147342 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Golota, V.I.
Kudin, D.V.
Manuilenko, O.V.
Taran, G.V.
Zavada, L.M.
Yegorov, M.O.
Khmelevskaya, V.F.
Decomposition of ethelene in low temperature plasma of barrierless discharge
Вопросы атомной науки и техники
description The experimental setup for investigation of conversion the ethylene impurity in the air on the basis of automated container systems, which using for storing and transporting vegetables and fruits, was developed and tested. The high efficiency of using a barrierless gas discharge to conversion the ethylene impurity in the air experimentally confirmed.
format Article
author Golota, V.I.
Kudin, D.V.
Manuilenko, O.V.
Taran, G.V.
Zavada, L.M.
Yegorov, M.O.
Khmelevskaya, V.F.
author_facet Golota, V.I.
Kudin, D.V.
Manuilenko, O.V.
Taran, G.V.
Zavada, L.M.
Yegorov, M.O.
Khmelevskaya, V.F.
author_sort Golota, V.I.
title Decomposition of ethelene in low temperature plasma of barrierless discharge
title_short Decomposition of ethelene in low temperature plasma of barrierless discharge
title_full Decomposition of ethelene in low temperature plasma of barrierless discharge
title_fullStr Decomposition of ethelene in low temperature plasma of barrierless discharge
title_full_unstemmed Decomposition of ethelene in low temperature plasma of barrierless discharge
title_sort decomposition of ethelene in low temperature plasma of barrierless discharge
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url http://dspace.nbuv.gov.ua/handle/123456789/147342
citation_txt Decomposition of ethelene in low temperature plasma of barrierless discharge / V.I. Golota, D.V. Kudin, O.V. Manuilenko, G.V. Taran, L.M. Zavada, M.O. Yegorov, V.F. Khmelevskaya // Вопросы атомной науки и техники. — 2018. — № 4. — С. 160-163. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT golotavi decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge
AT kudindv decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge
AT manuilenkoov decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge
AT tarangv decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge
AT zavadalm decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge
AT yegorovmo decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge
AT khmelevskayavf decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge
first_indexed 2025-07-11T02:15:44Z
last_indexed 2025-07-11T02:15:44Z
_version_ 1837315030116204544
fulltext ISSN 1562-6016. ВАНТ. 2018. №4(116) 160 DECOMPOSITION OF ETHELENE IN LOW TEMPERATURE PLASMA OF BARRIERLESS DISCHARGE V.I. Golota, D.V. Kudin*, O.V. Manuilenko, G.V. Taran, L.M. Zavada, M.O. Yegorov, V.F. Khmelevskaya National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine *E-mail: kudin@kipt.kharkov.ua The experimental setup for investigation of conversion the ethylene impurity in the air on the basis of automated container systems, which using for storing and transporting vegetables and fruits, was developed and tested. The high efficiency of using a barrierless gas discharge to conversion the ethylene impurity in the air experimentally confirmed. PACS: 52.75.-d, 52.77.-j, 52.80.Hc, 52.90.+z, 82.33.Xj INTRODUCTION Research and development of atmospheric pressure gas discharge has shown significant progress in the past decade [1 - 5]. But the widespread industrial appli- cation has so far received only ozone generators [6] and systems for cleaning of combustion gases. In the food industry, in addition to the tasks of de- contamination and disinfection, there are still a number of prospective applications for gas discharge of atmos- pheric pressure, among them, the ethylene (C2H4) de- composition for sealed volumes. Back in the 1930's, it was discovered that low con- centrations of ethylene admixture in the storage atmos- phere resulted in a rapid deterioration of products [7]. Later, it was found that ethylene is produced by many fruits and vegetables in the process of maturation and its increased concentration leads to accelerated maturation of products and loss of consumer properties. Some fruits, such as apples, produce a very high level of eth- ylene and can significantly accelerate maturation and spoil other fruits and vegetables in storage facilities. The ethylene concentration of 1 ppm can spoil the entire lot within one day. Even if, as a result of such impact the loss of stored produces is of 3…5%, the scale of overall losses is a very high. The temperature also has a strong influence on mat- uration, but the production of ethylene with the "breath- ing" of the collected vegetables and fruits does not stop there. Control over the level of ethylene in the air can extend the shelf life of vegetables and fruits from days to weeks. Today, to prevent an ethylene production the special catalysts and sorbents are used. The strong in- fluence of humidity on the efficiency of sorbents and their sorption capacity creates significant logistic issues for application, maintenance and disposal of these mate- rials. Therefore, the study of plasma-chemical methods of decomposition of ethylene impurities in air at atmos- pheric pressure is of actual real-life problem. As shown in works [8 - 10], the barrierless gas dis- charge can be used to degrade minor impurities of hy- drocarbons in the air. EXPERIMENTAL SETUP AND EQUIPMENTS Experimental studies were carried out in a standard container-refrigerator with volume of 65 m3. The schematic of the experimental setup on the study of dynamics of the ethylene decomposition is shown on Fig. 1. The 100% concentration of ethylene from a 40-liter cylinder was injected in container by using of a pressure regulator. The control of amount of C2H4 was carried out by using of the Alicat Scientific MC-200SCCM-D/5M C2H4 electronic flow meter. The flow rate of ethylene was 4, 8 and 16 cm3/minute. Fig.1. The schematic of experimental setup. 1 − ethylene cylinder; 2 − pressure regulator; 3 − C2H4 flow meter; 4 - 11 − ports for circulation of air and injection of ethylene; 12 − plasmochemical system; 13 − carolithic filter for ozone decomposition; 14 − blower; 15 − ozone monitor; 16 − ethylene moni- tor; 17 − humidity meter; 18 – gas sampler; 19 − circulating air compressor; 20 − container The air in the container is forcibly circulated by an external air pump at the rate of 2000 m3/hour and cooled down to 5°C. The concentrations of ethylene and ozone, as well as air temperature and humidity were measured by sensors introduced into the circulation line and at different points in the container. The ethylene concentration was measured by the ItaCA56 meter and monitored by sam- pling from the circulation line air probes, which ana- lyzed by the HP Series II gas chromatograph with a flame-ionization detector. Samples were taken from different control sites of the circulation line (in the mid- dle of the container, near the door and at the end, at dif- ferent heights) with a syringe of 1 ml. The chromato- graph was pre-calibrated with a standard gas mixtures 10 and 100 ppm of ethylene. The Fig. 2 shows the chromatographic peak of the gas mixture with an eth- ylene concentration of 10 ppm. mailto:kudin@kipt.kharkov.ua ISSN 1562-6016. ВАНТ. 2018. №4(116) 161 Fig. 2. The chromatogram of a standard gas mixture with an ethylene concentration of 10 ppm The Fig. 3 is shown the chromatogram of the stand- ard gas mixture with an ethylene concentration of 100 ppm. Fig. 3. The chromatogram of a standard gas mixture with an ethylene concentration of 100 ppm The chromatographic peak of ethylene was observed at 2.5 min. The concentration of ethylene in samples is calculated on the area of the chromatographic peak. The obtained data for samples from different sites have been averaged. In the middle of the container plasma-chemical sys- tem based on three pulsed power supplies with a maxi- mum operation power of 320 W was installed. The air flows are circulated in parallel-connected plasma- chemical reactors (PCRs) with a total flow rate of 160…180 m3/h. Since the increasing of ozone concen- tration in air above 1 ppm is unacceptable for fruit stor- age technology, air after PCRs is fed to a carulite filter [11]. Thus, the ozone concentration in container doesn’t exceed of 0.2…0.4 ppm in the entire range of power applied to reactors. RESULTS Experimental studies of the influence of low- temperature plasma of barrierless gas discharge on the content of ethylene in the air circulating in a container have been carried out. The Fig. 4 is shown a typical dynamic for the filling of container with ethylene and next dropping of eth- ylene concentration after the turn of the plasma- chemical system. The rate of ethylene injection is of 4 cm3/min. As can be seen from Fig. 4, after the turn ON the plasma-chemical system, there is a fairly rapid decrease in the concentration of ethylene in the air. Fig. 4. The dependence of the ethylene concentration for OFF and ON mode of the plasma-chemical system The Fig. 5 is shown dependence of ethylene concen- tration after the plasmachemical system was ON. The ethylene flow rate is of 4, 8 and 16 cm3/minute. Fig. 5. The dependence of the ethylene concentration in the container after the plasma-chemical system was ON. The ethylene flow rate is of 4, 8 and 16 cm3/minute It is seen that the character of the dependence is sim- ilar, and when the plasma-chemical system with a pow- er supply of 320 W is turned on, the concentration of ethylene is reduced to less than 1 ppm. If the destruction of ethylene in the PCR is due to collisions with electrons that result is either a direct col- lapse of a molecule or transfer it into an excited state, followed by reaction with the constituents of ozone-air- ethylene mixture (a) or slow ozonolysis accumulated ozone (b) then the rate of disintegration of ethylene in the discharge occurs in proportion to its concentration. The speed of its development is determined by the products of decomposition of ethylene in PCR, that is, doesn’t depend explicitly on its concentration. There- fore, the kinetics of the decomposition of ethylene in the discharge will be described, in the simplest case, by the equation )()( 1 tCkk dt tdC o −= , (1) If )0( =tC = oC , then decision (1) has the form: ( )tk k kC k ktC o o o 1 11 exp)( −⋅      −+= , (2) where ok − rate constant of ethylene production, а 1k − the rate constant of ethylene destruction in PCR. At ISSN 1562-6016. ВАНТ. 2018. №4(116) 162 ∞→t , get stationary concentration 1/ kkC o SS = . The solution (2) is shown in Fig. 6. Fig. 6. Dependence )(tC on time at different initial concentrations − SS o CC < , SS o CC = and SS o CC > We can assume that the equation for the rate of de- struction of ethylene contains not only a member pro- portional to the first degree of concentration, but also a member proportional to the second degree. In this case, equation (1) becomes more complicated. But as before, it can be integrated, and its solution has the form shown on Fig. 6. Since the injection of air-ethylene mixture layer into the PCR at the initial stage of its passage, in this mixture practically no products of disintegration of ethylene, then ethylene can’t be synthesized, that is, ok = 0, which means that SSC = 0. Thus, at a single passage of a air- ethylene mixture layer through PCR it’s impossible to get into the area below SSC (see Fig. 6), where the syn- thesis would start, and not the destruction of ethylene. The area SS o CC < − it’s reactor working area. For PCR, which should break down ethylene, the working area should be an area SSCC > . As the layer of air-ethylene mixture passes through PCR, there are products of eth- ylene decomposition, which leads to the possibility of its synthesis. That is, ok becomes more than zero, which leads to SSC > 0. Thus, along the length of the PCR SSC increases from zero to some extent, which is de- termined by the rate of ethylene destruction in the dis- charge. It is important that the output of PCR SSC > 0, that is, to obtain a zero concentration of ethylene at the outlet of PCR is impossible. The character of the re- ceived experimental graphs completely coincides with the region SS o CC < theoretical calculation. Thus, it has been demonstrated that using a gas bar- rierless discharge can significantly reduce the equilibri- um concentration of ethylene in air of a closed hermetic volume. CONCLUSIONS The high efficiency of the use the barrierless gas discharge plasma-chemical reactor for decomposition of the ethylene in the air has been theoretically and exper- imentally demonstrated. The current study has been supported by STCU pro- ject #658. REFERENCES 1. A. Kotsuspyros, S.-M. Yan, K. Beker. Destruction of hydrocarbons in non-thermal, ambient-pressure, capillary discharge // International Journal of Mass Spectrometry. 2004, v. 233, p. 305-315. 2. B. Sarmiento, J.J. Brey, V.J. Rico, I.G. Viera. Hy- drogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge // Jour- nal of Power Sources. 2007, v. 169, p. 140-143. 3. M. Deminsky, V. Jivotov, B. Potarkin, V. Rusanov. Plasma-assisted production of hydrogen from hy- drocarbons // Journal Pure Appl. Chem. 2002, v. 74, № 3, p. 413-418. 4. D.V. Kudin, V.I. Golota, S.V. Rodionov, S.Yu Gorbenko, O.O. Zamuriev. Barreierless dis- charge in propane-butane gas mixture // Uzhhorod University Scientific Herald. Series Physics. 2011, iss. 29, p. 244-248. 5. Z. Machala, E. Marode, C.O. Laux, C.H. Kruger, DC glow discharge in atmospheric pressure air // Journal Advanced Oxidation Technology. 2004, v. 4, № 2, p. 133-137. 6. V.I. Golota, О.V. Manuilenko, G.V. Taran, et al. Ozone decay in chemical reactor for ozone- dynamical disintegration of used tyres // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Acceleration Methods”. 2010, № 4, p. 204-209. 7. W. Crocker, A.E. Hitchcock, P.W. Zimmerman. Similarities in the effects of ethlyene and the plant auxins // Contrib. Boyce Thompson inst. 1935, 7, 231-48. 8. V.I. Golota, L.М. Zavada, О.V. Кotukov, D.V. Kudin, S.V. Rodionov, А.S. Pismenetskii, Y.V. Dotsenko. Conversion of methanol and ethanol steams in dis- charge with strongly inhomogeneous electric field distribution at atmospheric pressure // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Acceleration Methods”. 2010, № 4, p. 199-203. 9. V.I. Golota, D.V. Kudin, S.V. Rodionov, et al. Decom- position of dichloroethane vapor in barrierless dis- charge // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2011, № 6, p. 182-184. 10. D.V. Kudin, V.I. Golota, S.V. Rodionov. Oxidation of hydrocarbon impurities in a barrierless discharge at atmospheric pressure // Uzhhorod University Sci- entific Herald. Series Physics. 2011, iss. 29, p 239- 243. 11. http://www.caruscorporation.com/page/air/products/ carulite-200 Article received 01.06.2018 http://www.caruscorporation.com/page/air/products/carulite-200 http://www.caruscorporation.com/page/air/products/carulite-200 ISSN 1562-6016. ВАНТ. 2018. №4(116) 163 РАЗЛОЖЕНИЕ ЭТИЛЕНА В НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЕ БЕЗБАРЬЕРНОГО ГАЗОВОГО РАЗРЯДА В.И. Голота, Д.В. Кудин, О.В. Мануйленко, Г.В. Таран, Л.М. Завада, М.А. Егоров, В.Ф. Хмелевская Разработано и протестировано экспериментальный стенд для исследования разложения примеси этилена в воздухе на базе систем автоматизированного контейнера, который используется для хранения и транспор- тировки фруктов и овощей. Экспериментально подтверждена высокая эффективность использования безба- рьерного газового разряда для окисления примеси этилена в воздухе. РОЗКЛАДАННЯ ЕТИЛЕНУ В НИЗЬКОТЕМПЕРАТУРНІЙ ПЛАЗМІ БЕЗБАР’ЄРНОГО ГАЗОВОГО РОЗРЯДУ В.І. Голота, Д.В. Кудін, О.В. Мануйленко, Г.В. Таран, Л.М. Завада, М.О. Єгоров, В.Ф. Хмелівська Розроблено та протестовано експериментальний стенд для дослідження розкладання домішки етилену в повітрі на базі систем автоматизованого контейнера, що використовується для зберігання та транспортуван- ня овочів та фруктів. Експериментально підтверджено високу ефективність використання безбар’єрного газового розряду для окиснення домішки етилену в повітрі.