Decomposition of ethelene in low temperature plasma of barrierless discharge
The experimental setup for investigation of conversion the ethylene impurity in the air on the basis of automated container systems, which using for storing and transporting vegetables and fruits, was developed and tested. The high efficiency of using a barrierless gas discharge to conversion the...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147342 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Decomposition of ethelene in low temperature plasma of barrierless discharge / V.I. Golota, D.V. Kudin, O.V. Manuilenko, G.V. Taran, L.M. Zavada, M.O. Yegorov, V.F. Khmelevskaya // Вопросы атомной науки и техники. — 2018. — № 4. — С. 160-163. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147342 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1473422019-02-15T01:23:55Z Decomposition of ethelene in low temperature plasma of barrierless discharge Golota, V.I. Kudin, D.V. Manuilenko, O.V. Taran, G.V. Zavada, L.M. Yegorov, M.O. Khmelevskaya, V.F. Плазменно-пучковый разряд, газовый разряд и плазмохимия The experimental setup for investigation of conversion the ethylene impurity in the air on the basis of automated container systems, which using for storing and transporting vegetables and fruits, was developed and tested. The high efficiency of using a barrierless gas discharge to conversion the ethylene impurity in the air experimentally confirmed. Розроблено та протестовано експериментальний стенд для дослідження розкладання домішки етилену в повітрі на базі систем автоматизованого контейнера, що використовується для зберігання та транспортування овочів та фруктів. Експериментально підтверджено високу ефективність використання безбар’єрного газового розряду для окиснення домішки етилену в повітрі. Разработано и протестировано экспериментальный стенд для исследования разложения примеси этилена в воздухе на базе систем автоматизированного контейнера, который используется для хранения и транспортировки фруктов и овощей. Экспериментально подтверждена высокая эффективность использования безбарьерного газового разряда для окисления примеси этилена в воздухе. 2018 Article Decomposition of ethelene in low temperature plasma of barrierless discharge / V.I. Golota, D.V. Kudin, O.V. Manuilenko, G.V. Taran, L.M. Zavada, M.O. Yegorov, V.F. Khmelevskaya // Вопросы атомной науки и техники. — 2018. — № 4. — С. 160-163. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.75.-d, 52.77.-j, 52.80.Hc, 52.90.+z, 82.33.Xj http://dspace.nbuv.gov.ua/handle/123456789/147342 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия |
spellingShingle |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия Golota, V.I. Kudin, D.V. Manuilenko, O.V. Taran, G.V. Zavada, L.M. Yegorov, M.O. Khmelevskaya, V.F. Decomposition of ethelene in low temperature plasma of barrierless discharge Вопросы атомной науки и техники |
description |
The experimental setup for investigation of conversion the ethylene impurity in the air on the basis of automated
container systems, which using for storing and transporting vegetables and fruits, was developed and tested. The
high efficiency of using a barrierless gas discharge to conversion the ethylene impurity in the air experimentally
confirmed. |
format |
Article |
author |
Golota, V.I. Kudin, D.V. Manuilenko, O.V. Taran, G.V. Zavada, L.M. Yegorov, M.O. Khmelevskaya, V.F. |
author_facet |
Golota, V.I. Kudin, D.V. Manuilenko, O.V. Taran, G.V. Zavada, L.M. Yegorov, M.O. Khmelevskaya, V.F. |
author_sort |
Golota, V.I. |
title |
Decomposition of ethelene in low temperature plasma of barrierless discharge |
title_short |
Decomposition of ethelene in low temperature plasma of barrierless discharge |
title_full |
Decomposition of ethelene in low temperature plasma of barrierless discharge |
title_fullStr |
Decomposition of ethelene in low temperature plasma of barrierless discharge |
title_full_unstemmed |
Decomposition of ethelene in low temperature plasma of barrierless discharge |
title_sort |
decomposition of ethelene in low temperature plasma of barrierless discharge |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147342 |
citation_txt |
Decomposition of ethelene in low temperature plasma of barrierless discharge / V.I. Golota, D.V. Kudin, O.V. Manuilenko, G.V. Taran, L.M. Zavada, M.O. Yegorov, V.F. Khmelevskaya // Вопросы атомной науки и техники. — 2018. — № 4. — С. 160-163. — Бібліогр.: 11 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT golotavi decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge AT kudindv decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge AT manuilenkoov decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge AT tarangv decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge AT zavadalm decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge AT yegorovmo decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge AT khmelevskayavf decompositionofetheleneinlowtemperatureplasmaofbarrierlessdischarge |
first_indexed |
2025-07-11T02:15:44Z |
last_indexed |
2025-07-11T02:15:44Z |
_version_ |
1837315030116204544 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №4(116) 160
DECOMPOSITION OF ETHELENE IN LOW TEMPERATURE PLASMA
OF BARRIERLESS DISCHARGE
V.I. Golota, D.V. Kudin*, O.V. Manuilenko, G.V. Taran, L.M. Zavada,
M.O. Yegorov, V.F. Khmelevskaya
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
*E-mail: kudin@kipt.kharkov.ua
The experimental setup for investigation of conversion the ethylene impurity in the air on the basis of automated
container systems, which using for storing and transporting vegetables and fruits, was developed and tested. The
high efficiency of using a barrierless gas discharge to conversion the ethylene impurity in the air experimentally
confirmed.
PACS: 52.75.-d, 52.77.-j, 52.80.Hc, 52.90.+z, 82.33.Xj
INTRODUCTION
Research and development of atmospheric pressure
gas discharge has shown significant progress in the past
decade [1 - 5]. But the widespread industrial appli-
cation has so far received only ozone generators
[6] and systems for cleaning of combustion gases.
In the food industry, in addition to the tasks of de-
contamination and disinfection, there are still a number
of prospective applications for gas discharge of atmos-
pheric pressure, among them, the ethylene (C2H4) de-
composition for sealed volumes.
Back in the 1930's, it was discovered that low con-
centrations of ethylene admixture in the storage atmos-
phere resulted in a rapid deterioration of products [7].
Later, it was found that ethylene is produced by many
fruits and vegetables in the process of maturation and its
increased concentration leads to accelerated maturation
of products and loss of consumer properties. Some
fruits, such as apples, produce a very high level of eth-
ylene and can significantly accelerate maturation and
spoil other fruits and vegetables in storage facilities.
The ethylene concentration of 1 ppm can spoil the entire
lot within one day. Even if, as a result of such impact
the loss of stored produces is of 3…5%, the scale of
overall losses is a very high.
The temperature also has a strong influence on mat-
uration, but the production of ethylene with the "breath-
ing" of the collected vegetables and fruits does not stop
there. Control over the level of ethylene in the air can
extend the shelf life of vegetables and fruits from days
to weeks. Today, to prevent an ethylene production the
special catalysts and sorbents are used. The strong in-
fluence of humidity on the efficiency of sorbents and
their sorption capacity creates significant logistic issues
for application, maintenance and disposal of these mate-
rials. Therefore, the study of plasma-chemical methods
of decomposition of ethylene impurities in air at atmos-
pheric pressure is of actual real-life problem.
As shown in works [8 - 10], the barrierless gas dis-
charge can be used to degrade minor impurities of hy-
drocarbons in the air.
EXPERIMENTAL SETUP
AND EQUIPMENTS
Experimental studies were carried out in a standard
container-refrigerator with volume of 65 m3.
The schematic of the experimental setup on the
study of dynamics of the ethylene decomposition is
shown on Fig. 1. The 100% concentration of ethylene
from a 40-liter cylinder was injected in container by
using of a pressure regulator. The control of amount of
C2H4 was carried out by using of the Alicat Scientific
MC-200SCCM-D/5M C2H4 electronic flow meter. The
flow rate of ethylene was 4, 8 and 16 cm3/minute.
Fig.1. The schematic of experimental setup.
1 − ethylene cylinder; 2 − pressure regulator; 3 − C2H4
flow meter; 4 - 11 − ports for circulation of air
and injection of ethylene; 12 − plasmochemical system;
13 − carolithic filter for ozone decomposition;
14 − blower; 15 − ozone monitor; 16 − ethylene moni-
tor; 17 − humidity meter; 18 – gas sampler;
19 − circulating air compressor; 20 − container
The air in the container is forcibly circulated by an
external air pump at the rate of 2000 m3/hour and cooled
down to 5°C.
The concentrations of ethylene and ozone, as well as
air temperature and humidity were measured by sensors
introduced into the circulation line and at different
points in the container. The ethylene concentration was
measured by the ItaCA56 meter and monitored by sam-
pling from the circulation line air probes, which ana-
lyzed by the HP Series II gas chromatograph with a
flame-ionization detector. Samples were taken from
different control sites of the circulation line (in the mid-
dle of the container, near the door and at the end, at dif-
ferent heights) with a syringe of 1 ml. The chromato-
graph was pre-calibrated with a standard gas mixtures
10 and 100 ppm of ethylene. The Fig. 2 shows the
chromatographic peak of the gas mixture with an eth-
ylene concentration of 10 ppm.
mailto:kudin@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2018. №4(116) 161
Fig. 2. The chromatogram of a standard gas mixture
with an ethylene concentration of 10 ppm
The Fig. 3 is shown the chromatogram of the stand-
ard gas mixture with an ethylene concentration of
100 ppm.
Fig. 3. The chromatogram of a standard gas mixture
with an ethylene concentration of 100 ppm
The chromatographic peak of ethylene was observed
at 2.5 min. The concentration of ethylene in samples is
calculated on the area of the chromatographic peak. The
obtained data for samples from different sites have been
averaged.
In the middle of the container plasma-chemical sys-
tem based on three pulsed power supplies with a maxi-
mum operation power of 320 W was installed. The air
flows are circulated in parallel-connected plasma-
chemical reactors (PCRs) with a total flow rate of
160…180 m3/h. Since the increasing of ozone concen-
tration in air above 1 ppm is unacceptable for fruit stor-
age technology, air after PCRs is fed to a carulite filter
[11]. Thus, the ozone concentration in container doesn’t
exceed of 0.2…0.4 ppm in the entire range of power
applied to reactors.
RESULTS
Experimental studies of the influence of low-
temperature plasma of barrierless gas discharge on the
content of ethylene in the air circulating in a container
have been carried out.
The Fig. 4 is shown a typical dynamic for the filling
of container with ethylene and next dropping of eth-
ylene concentration after the turn of the plasma-
chemical system. The rate of ethylene injection is of 4
cm3/min.
As can be seen from Fig. 4, after the turn ON the
plasma-chemical system, there is a fairly rapid decrease
in the concentration of ethylene in the air.
Fig. 4. The dependence of the ethylene concentration
for OFF and ON mode of the plasma-chemical system
The Fig. 5 is shown dependence of ethylene concen-
tration after the plasmachemical system was ON. The
ethylene flow rate is of 4, 8 and 16 cm3/minute.
Fig. 5. The dependence of the ethylene concentration in
the container after the plasma-chemical system was ON.
The ethylene flow rate is of 4, 8 and 16 cm3/minute
It is seen that the character of the dependence is sim-
ilar, and when the plasma-chemical system with a pow-
er supply of 320 W is turned on, the concentration of
ethylene is reduced to less than 1 ppm.
If the destruction of ethylene in the PCR is due to
collisions with electrons that result is either a direct col-
lapse of a molecule or transfer it into an excited state,
followed by reaction with the constituents of ozone-air-
ethylene mixture (a) or slow ozonolysis accumulated
ozone (b) then the rate of disintegration of ethylene in
the discharge occurs in proportion to its concentration.
The speed of its development is determined by the
products of decomposition of ethylene in PCR, that is,
doesn’t depend explicitly on its concentration. There-
fore, the kinetics of the decomposition of ethylene in the
discharge will be described, in the simplest case, by the
equation
)()(
1 tCkk
dt
tdC
o −= , (1)
If )0( =tC = oC , then decision (1) has the form:
( )tk
k
kC
k
ktC o
o
o
1
11
exp)( −⋅
−+= , (2)
where ok − rate constant of ethylene production, а 1k −
the rate constant of ethylene destruction in PCR. At
ISSN 1562-6016. ВАНТ. 2018. №4(116) 162
∞→t , get stationary concentration 1/ kkC o
SS = . The
solution (2) is shown in Fig. 6.
Fig. 6. Dependence )(tC on time at different initial
concentrations − SS
o CC < , SS
o CC = and SS
o CC >
We can assume that the equation for the rate of de-
struction of ethylene contains not only a member pro-
portional to the first degree of concentration, but also a
member proportional to the second degree. In this case,
equation (1) becomes more complicated. But as before,
it can be integrated, and its solution has the form shown
on Fig. 6.
Since the injection of air-ethylene mixture layer into
the PCR at the initial stage of its passage, in this mixture
practically no products of disintegration of ethylene,
then ethylene can’t be synthesized, that is, ok = 0, which
means that SSC = 0. Thus, at a single passage of a air-
ethylene mixture layer through PCR it’s impossible to
get into the area below
SSC (see Fig. 6), where the syn-
thesis would start, and not the destruction of ethylene.
The area SS
o CC < − it’s reactor working area. For PCR,
which should break down ethylene, the working area
should be an area SSCC > . As the layer of air-ethylene
mixture passes through PCR, there are products of eth-
ylene decomposition, which leads to the possibility of its
synthesis. That is, ok becomes more than zero, which
leads to SSC > 0. Thus, along the length of the PCR
SSC increases from zero to some extent, which is de-
termined by the rate of ethylene destruction in the dis-
charge. It is important that the output of PCR SSC > 0,
that is, to obtain a zero concentration of ethylene at the
outlet of PCR is impossible. The character of the re-
ceived experimental graphs completely coincides with
the region SS
o CC < theoretical calculation.
Thus, it has been demonstrated that using a gas bar-
rierless discharge can significantly reduce the equilibri-
um concentration of ethylene in air of a closed hermetic
volume.
CONCLUSIONS
The high efficiency of the use the barrierless gas
discharge plasma-chemical reactor for decomposition of
the ethylene in the air has been theoretically and exper-
imentally demonstrated.
The current study has been supported by STCU pro-
ject #658.
REFERENCES
1. A. Kotsuspyros, S.-M. Yan, K. Beker. Destruction
of hydrocarbons in non-thermal, ambient-pressure,
capillary discharge // International Journal of Mass
Spectrometry. 2004, v. 233, p. 305-315.
2. B. Sarmiento, J.J. Brey, V.J. Rico, I.G. Viera. Hy-
drogen production by reforming of hydrocarbons
and alcohols in a dielectric barrier discharge // Jour-
nal of Power Sources. 2007, v. 169, p. 140-143.
3. M. Deminsky, V. Jivotov, B. Potarkin, V. Rusanov.
Plasma-assisted production of hydrogen from hy-
drocarbons // Journal Pure Appl. Chem. 2002, v. 74,
№ 3, p. 413-418.
4. D.V. Kudin, V.I. Golota, S.V. Rodionov,
S.Yu Gorbenko, O.O. Zamuriev. Barreierless dis-
charge in propane-butane gas mixture // Uzhhorod
University Scientific Herald. Series Physics. 2011,
iss. 29, p. 244-248.
5. Z. Machala, E. Marode, C.O. Laux, C.H. Kruger,
DC glow discharge in atmospheric pressure air //
Journal Advanced Oxidation Technology. 2004, v. 4,
№ 2, p. 133-137.
6. V.I. Golota, О.V. Manuilenko, G.V. Taran, et al.
Ozone decay in chemical reactor for ozone-
dynamical disintegration of used tyres // Problems of
Atomic Science and Technology. Series “Plasma
Electronics and New Acceleration Methods”. 2010,
№ 4, p. 204-209.
7. W. Crocker, A.E. Hitchcock, P.W. Zimmerman.
Similarities in the effects of ethlyene and the plant
auxins // Contrib. Boyce Thompson inst. 1935, 7,
231-48.
8. V.I. Golota, L.М. Zavada, О.V. Кotukov, D.V. Kudin,
S.V. Rodionov, А.S. Pismenetskii, Y.V. Dotsenko.
Conversion of methanol and ethanol steams in dis-
charge with strongly inhomogeneous electric field
distribution at atmospheric pressure // Problems of
Atomic Science and Technology. Series “Plasma
Electronics and New Acceleration Methods”. 2010,
№ 4, p. 199-203.
9. V.I. Golota, D.V. Kudin, S.V. Rodionov, et al. Decom-
position of dichloroethane vapor in barrierless dis-
charge // Problems of Atomic Science and Technology.
Series “Plasma Physics”. 2011, № 6, p. 182-184.
10. D.V. Kudin, V.I. Golota, S.V. Rodionov. Oxidation
of hydrocarbon impurities in a barrierless discharge
at atmospheric pressure // Uzhhorod University Sci-
entific Herald. Series Physics. 2011, iss. 29, p 239-
243.
11. http://www.caruscorporation.com/page/air/products/
carulite-200
Article received 01.06.2018
http://www.caruscorporation.com/page/air/products/carulite-200
http://www.caruscorporation.com/page/air/products/carulite-200
ISSN 1562-6016. ВАНТ. 2018. №4(116) 163
РАЗЛОЖЕНИЕ ЭТИЛЕНА В НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЕ
БЕЗБАРЬЕРНОГО ГАЗОВОГО РАЗРЯДА
В.И. Голота, Д.В. Кудин, О.В. Мануйленко, Г.В. Таран, Л.М. Завада, М.А. Егоров, В.Ф. Хмелевская
Разработано и протестировано экспериментальный стенд для исследования разложения примеси этилена
в воздухе на базе систем автоматизированного контейнера, который используется для хранения и транспор-
тировки фруктов и овощей. Экспериментально подтверждена высокая эффективность использования безба-
рьерного газового разряда для окисления примеси этилена в воздухе.
РОЗКЛАДАННЯ ЕТИЛЕНУ В НИЗЬКОТЕМПЕРАТУРНІЙ ПЛАЗМІ
БЕЗБАР’ЄРНОГО ГАЗОВОГО РОЗРЯДУ
В.І. Голота, Д.В. Кудін, О.В. Мануйленко, Г.В. Таран, Л.М. Завада, М.О. Єгоров, В.Ф. Хмелівська
Розроблено та протестовано експериментальний стенд для дослідження розкладання домішки етилену в
повітрі на базі систем автоматизованого контейнера, що використовується для зберігання та транспортуван-
ня овочів та фруктів. Експериментально підтверджено високу ефективність використання безбар’єрного
газового розряду для окиснення домішки етилену в повітрі.
|