Validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge

Gas-dynamic expansion of a low-energy atmospheric pressure spark discharge was numerically simulated. The calculated data were compared with experimental results to validate the numerical model. A satisfactory correlation of spark photo images with a simulated spark channel expansion was observed....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Korytchenko, K.V., Markov, V.S., Polyakov, I.V., Slepuzhnikov, E.D., Meleshchenko, R.G.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147350
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge / K.V. Korytchenko, V.S. Markov, I.V. Polyakov, E.D. Slepuzhnikov, R.G. Meleshchenko // Вопросы атомной науки и техники. — 2018. — № 4. — С. 144-149. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147350
record_format dspace
spelling irk-123456789-1473502019-02-15T01:23:46Z Validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge Korytchenko, K.V. Markov, V.S. Polyakov, I.V. Slepuzhnikov, E.D. Meleshchenko, R.G. Плазменно-пучковый разряд, газовый разряд и плазмохимия Gas-dynamic expansion of a low-energy atmospheric pressure spark discharge was numerically simulated. The calculated data were compared with experimental results to validate the numerical model. A satisfactory correlation of spark photo images with a simulated spark channel expansion was observed. It was found out that an experimental total light intensity of spark discharge corresponds with spark radiation power. Time histories of a particle number concentration and energy input were calculated. Radial temperature, pressure, density and conductivity profiles at various times were investigated Чисельно досліджено газодинамічне розширення низькоенергетичного іскрового розряду атмосферного тиску. Перевірка математичної моделі проведена шляхом порівняння чисельних та експериментальних результатів. Отримана задовільна кореляція фотозображень іскрового розряду з розрахунковими даними з розширення іскрового каналу. З’ясовано, що повна інтенсивність випромінювання іскрового розряду, яка отримана експериментально, відповідає потужності випромінювання іскри. Розраховано розподіл концентрації компонентів та динаміка вводу енергії в іскру. Досліджені розподіли температури, тиску, густини та провідності в радіальному розрізі в різні моменти часу. Численно исследовано газодинамическое расширение низкоэнергетического искрового разряда атмосферного давления. Проверка математической модели проведена путем сравнения численных и экспериментальных результатов. Получена удовлетворительная корреляция фотоизображений искрового разряда с расчетными данными по расширению искрового канала. Выявлено, что полная интенсивность излучения искрового разряда, получаемая экспериментально, соответствует мощности излучения искры. Рассчитано распределение концентрации компонентов и динамика ввода энергии в искру. Исследованы распределения температуры, давления, плотности и проводимости в радиальном сечении в разные моменты времени. 2018 Article Validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge / K.V. Korytchenko, V.S. Markov, I.V. Polyakov, E.D. Slepuzhnikov, R.G. Meleshchenko // Вопросы атомной науки и техники. — 2018. — № 4. — С. 144-149. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 52.80.Mg http://dspace.nbuv.gov.ua/handle/123456789/147350 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Korytchenko, K.V.
Markov, V.S.
Polyakov, I.V.
Slepuzhnikov, E.D.
Meleshchenko, R.G.
Validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge
Вопросы атомной науки и техники
description Gas-dynamic expansion of a low-energy atmospheric pressure spark discharge was numerically simulated. The calculated data were compared with experimental results to validate the numerical model. A satisfactory correlation of spark photo images with a simulated spark channel expansion was observed. It was found out that an experimental total light intensity of spark discharge corresponds with spark radiation power. Time histories of a particle number concentration and energy input were calculated. Radial temperature, pressure, density and conductivity profiles at various times were investigated
format Article
author Korytchenko, K.V.
Markov, V.S.
Polyakov, I.V.
Slepuzhnikov, E.D.
Meleshchenko, R.G.
author_facet Korytchenko, K.V.
Markov, V.S.
Polyakov, I.V.
Slepuzhnikov, E.D.
Meleshchenko, R.G.
author_sort Korytchenko, K.V.
title Validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge
title_short Validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge
title_full Validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge
title_fullStr Validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge
title_full_unstemmed Validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge
title_sort validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url http://dspace.nbuv.gov.ua/handle/123456789/147350
citation_txt Validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge / K.V. Korytchenko, V.S. Markov, I.V. Polyakov, E.D. Slepuzhnikov, R.G. Meleshchenko // Вопросы атомной науки и техники. — 2018. — № 4. — С. 144-149. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT korytchenkokv validationofthenumericalmodelofasparkchannelexpansioninalowenergyatmosphericpressuredischarge
AT markovvs validationofthenumericalmodelofasparkchannelexpansioninalowenergyatmosphericpressuredischarge
AT polyakoviv validationofthenumericalmodelofasparkchannelexpansioninalowenergyatmosphericpressuredischarge
AT slepuzhnikoved validationofthenumericalmodelofasparkchannelexpansioninalowenergyatmosphericpressuredischarge
AT meleshchenkorg validationofthenumericalmodelofasparkchannelexpansioninalowenergyatmosphericpressuredischarge
first_indexed 2025-07-11T02:16:23Z
last_indexed 2025-07-11T02:16:23Z
_version_ 1837315085987479552
fulltext ISSN 1562-6016. ВАНТ. 2018. №4(116) 144 VALIDATION OF THE NUMERICAL MODEL OF A SPARK CHANNEL EXPANSION IN A LOW-ENERGY ATMOSPHERIC PRESSURE DISCHARGE K.V. Korytchenko1, V.S. Markov1, I.V. Polyakov1, E.D. Slepuzhnikov2, R.G. Meleshchenko2 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; E-mail: omsroot@kpi.kharkov.ua; 2National University of Civil Defence of Ukraine, Kharkоv, Ukraine E-mail: korytchenko_kv@ukr.net Gas-dynamic expansion of a low-energy atmospheric pressure spark discharge was numerically simulated. The calculated data were compared with experimental results to validate the numerical model. A satisfactory correlation of spark photo images with a simulated spark channel expansion was observed. It was found out that an experimental total light intensity of spark discharge corresponds with spark radiation power. Time histories of a particle number concentration and energy input were calculated. Radial temperature, pressure, density and conductivity profiles at various times were investigated. PACS: 52.80.Mg INTRODUCTION A spark discharge has a lot of fields of using. For example, it applied for ignition of a combustible mixture including a direct detonation initiation, lighting, electri- cal switching, nanoparticle generation, etc. A complex experimental investigation of spark discharges requires high resolution techniques to measure a spark channel evolution, generated shock wave expansion, chemical components concentration distributions, light intensity, spatial distribution of temperature, pressure, density in spark channel, efficiency of energy deposition, excitation of discharge components, changing in electrical features (conductivity, voltage falling), etc [1 - 3]. Thus experi- mental spark researches are extremely complicated. The numerical model of a spark discharge which is convenient for application was recently developed [4 - 6]. A specific feature of the model is its ability to predict a spark channel expansion in the gas when electric cir- cuit parameters, the discharge gap length, and initial thermodynamic gas state are given. It is important to determine conditions of the model application. The model was successfully validated pre- viously by a high-energy spark discharge where the total spark energy equals about tens of Joules [7]. Now we validate the model when the total discharge energy is below one Joule. We used experimental data of a channel expansion of a low-energy atmospheric pressure spark discharge in nitrogen [1]. The experimental data include as a time- resolved imaging as electrical study of the discharge. Thus, the capacitance, resistance and inductance of a serial RLC-circuit, the length of the discharge gap and initial thermodynamic state of the discharge gas were used as initial conditions in the numerical model. Then we compared the experimental and simulated results of the channel expansion and the total light intensity to validate the model. THE NUMERICAL MODEL OF A SPARK CHANNEL EXPANSION Detailed description of the numerical model is given in [4 - 7]. The model can be applied to simulate a spark evolution after breakdown when the initial current- conducting channel is formed. The model describes a spark stage of a gas-dynamic expansion. The setup was simplified to a one-dimensional prob- lem in cylindrical symmetry where only radial depend- encies were modelled. A system of gas dynamic equa- tions (continuity, momentum and energy) was solved for the multicomponent chemically reactive gas mixture (molecular and atomic nitrogen), written as 0)(1 = ∂ ρ∂ + ∂ ρ∂ r ur rt ; (1) ( )[ ] r p r upr rt u = ∂ ρ+∂ + ∂ ρ∂ 21 ; (2) ;2 21 em 2 2 2 WE t u r dt dTkpuur r T −σ= ∂       ρ +ρe∂ + + ∂               +      + ρ +ρe∂ (3) i ii r ruy rt y ω= ∂ ∂ + ∂ ∂ )(1 , (4) where ρ is the gas density; u is the velocity, p is the pressure, e is the internal energy of gas per the mass unit of gas, kТ is the heat conduction coefficient, E is the electric field strength in the discharge channel column, σ is the plasma conductivity in the channel, Wem is the discharge energy radiation loss, r is the radial coordi- nate, t is the time, T is the gas temperature, yi is the mo- lar concentration of the i-th component (N2, N), and ωi is the rate of change of concentration of the i-th compo- nent of the mixture due to chemical reactions. We applied equations of a local thermodynamic equilibrium (LTE) plasma state to find out plasma pa- rameters in a spark discharge conductive channel. Con- ditions of LTE-model application were checked. In the conductive channel components e, N, N+, N++ have been considered. In the calculated region outside the conduc- tive channel plasma ionization has been neglected. In this region the components N2, N have been considered. ISSN 1562-6016. ВАНТ. 2018. №4(116) 145 We used equations of non-equilibrium chemical reac- tions to calculate components concentration in this re- gion. The energy deposition in the discharge channel was defined by the parameters of electric circuit. The diffusion process was not taken into account. To calculate the Joule heat deposited into the dis- charge channel we are supposed to know the current values of the electric field strength Е in the discharge channel column and plasma conductivity distribution σ in the plasma channel. It was assumed that only a longi- tudinal component of the electric field is present in the discharge channel and the field is uniformly distributed across the channel cross-section. The conductivity distribution in the gas-discharge channel was considered proceeding from the channel- based problem formulation. The highly ionized region was defined from the condition of tenfold exceed of the frequency of Coulomb collisions in comparison with that of elastic collision of electrons with a neutral plas- ma component (N atoms) as follows [8] 10 olСe tr nN σ⋅ ≤σ⋅ , (5) where σtr is the transport cross-section of elastic colli- sions of electrons with a neutral plasma component, N is the neutral plasma component density; ne is the electron number density, σCol is the Coulomb collision cross- section. It was assumed for the model that plasma in a dis- charge channel is quasi neutral with the ionization de- gree not exceeding a double one. An electron attachment process was neglected in the model. The ionization in the discharge channel was calculated using the Saha equation with regard to the single and dou- ble ionization of gas with components of e, N, N+, N++. The electron density ne and plasma temperature in rated cells were defined by solving the equation system: )exp(2 3 kT eITA g g N nn N N N N Ne +++ −⋅= ; (6) )exp(2 3 kT eITA g g n nn N N N N Ne ++ + ++ + ++ −⋅= ; (7) 2/)( )( 2 3 NNNNNN NNeNNN InnNeIn eInkTnnnN +++++++ +++++ ++++ +++++=e ; (8) +++ += NNe nnn 2 ; (9) m.i.aNNNNN mZ)nnN( +++ ++=ρ ; (10) where А = 6.06·10-21 cm-3eV-3/2; gi are the degeneracy of state for the ion i; IN is the nitrogen molecule dissocia- tion energy; IN+, IN++ is the energy of single and double ionization of nitrogen atom; ZN is the mass number of nitrogen; mа.i.m. = 1.66·10-27 kg; ρN is the atomic nitrogen density, e is the electron charge, ne is the electron num- ber density; n+ is the single ionization atom number den- sity; n++ is the double ionization atom number density, NN is the number density of atomic nitrogen, k is the Boltzman constant. The degeneracy of state for the ion gi and ionization energy of Ii components were taken from [9]. The plasma conductivity was calculated using the equation [10] Λ ⋅⋅ =σ σ ln )(994.96),( 2/3TZKTZ [Ω-1cm-1], (11) where Кσ(Z) is the dimensionless coefficient; Z is the average ion charge; lnΛ is the Coulomb logarithm. In the region of strongly ionized plasma (conductive channel) the gas pressure p was calculated using the expression kTnnnNp e )( +++ +++= . (12) Resistance Rsp of the discharge channel for the cur- rent time point was defined by the integration of current conductivity values σ in rated cells using the expression ∫ σπ= chr spsp drrlR 0 2/ , (13) where lsp is the discharge gap length (channel); rch is the conductive channel radius. The electric field strength Е was calculated using the expression spsp liRE /= . (14) The electrical process in the series RLC circuit was calculated using the equation [ ] ∫ =+⋅++ t spc idt C itRR dt diL 0 01)( , (15) where С is the capacitor capacitance, Rc is the equiva- lent ohmic resistance of a discharge circuit; L is the equivalent inductance of a discharge circuit. The radiation discharge energy losses were calculat- ed using the expression RSBem lТW /4σ= , (16) where σSB is the Stefan–Boltzmann constant, lR is the Rosseland mean free path. The dissociation/association process in nitrogen gas was calculated by reaction (Table). The velocity con- stant of the chemical reaction is expressed as       −= RT ETAk akkn kk exp , (17) where R is the gas constant. The coefficients of the velocity constants of forward reactions and the activation energy, adopted for the model REACTION Аk nk Eak N2 + M ↔ N + N + M 8.508·1025 -2.5 225 Remark. Where M denotes the third particle. The values are expressed in calories, moles, сm3, and s The reverse rate coefficient was calculated from the forward rate and the equilibrium constant. Specific heat capacity at constant pressure, standard- state molar enthalpy and standard-state molar entropy component (N2, N) as a function of a temperature T in the range of 300 to 5000 К were calculated as in [12]. The energy of the unit of mixture volume U0 was pre- scribed by the expression of ∑=ρe k kkUy 0 , (18) where yk is the molecular concentration of the k-th com- ponent of mixture, Uk 0 is the internal energy of 1 mole of the k-th component. A mixture pressure in the cells outside the conduc- tive channel was calculated using the sum of partial ISSN 1562-6016. ВАНТ. 2018. №4(116) 146 pressures of mixture components. The gradients of thermodynamic gas parameters are assumed to be absent for the discharge channel axis in a cylindrical symmetry. The computational area size was prescribed in the man- ner of preventing disturbance from reaching the right boundary. It is assumed that initial conditions have no gas dynamic perturbations in the entire computation region. For the computations given below it is assumed that р0 = 1.013·105 Pa, Т0 = 300 К. For initial conditions the computation region was filled with molecular nitro- gen. The model requires a circuit shorting to start simu- lating. So we manually inputted an energy in the simu- lated region with a radius of r0 = 50 μm during a time of t = 10 ns to form a narrow current-conducting channel. This energy was 0.24 mJ. RESULTS OF A NUMERICAL SIMULATION OF A SPARK EXPANSION It is accustomed getting the schlieren images to in- vestigate a spark channel expansion [3]. The Schlieren images show a spatial distribution of density gradient that allows being visible as a channel as a shock wave due to density changing in the channel and the wave during a spark evolution. The photo images taken from work [1] show a spatial distribution of lighting intensity in spark discharge. It is known [8] that a high- temperature spark channel produces the lighting. Thus we compared the photo images with the radial tempera- ture profiles of a spark discharge in this work. We used the photo imaging results for flat-end electrodes because this data better corresponds to a one-dimensional simu- lation in cylindrical symmetry assumed in our model. The length of the spark gap l equaled 2 mm in the calcu- lation that corresponds to the experimental condition of the shooting. The parameters of a serial RLC circuit used in [1] were analyzed carefully. We applied a capacitor bank with a total capacitance of C = 29 nF and inductance of L = 3.6 μH in the calculation. The charge voltage was Uc = 5425 V thus the total energy was 427 mJ. Accord- ing to estimation presented in [1], the total resistance values were in the range of 1.30…1.65 Ω. Using the measured current signal and simulating a current curve for such a RLC circuit where the resistance was R = 1.65 Ω we found out that there is a correlation of the current curves in third period of discharge (Fig. 1). Initially we assumed that the resistance value of 1.65 Ω is the equivalent ohmic resistance of discharge circuit. And the current reducing happened due to an additional resistance of a spark discharge. Fig. 1. Experimental current signal [1] (solid curve) and calculated current (dotted curve) for Rc = 1.65 Ω But our simulated data obtained by taking into ac- count the spark resistance showed that the calculated amplitude of a discharge current exceeded the experi- mental amplitude in this case. Current difference was above 100 A. Moreover, we observed that the simulated current-conducting channel expanded faster than the measured spark channel. For example, a comparison between the image at 2750 ns and radial temperature profile at 2000 ns is given (Fig. 2). Fig. 2. Experimental images of the spark at 2750 ns and calculated radial temperature profile at 2000 ns So the ohmic resistance was adapted in such a way that we had a satisfactory correlation of the measured discharge current with the simulated current. The ohmic resistance was variable. The resistance was presented by function of time (Fig. 3). Fig. 3. Time dependence of the ohmic resistance adapted for the calculation It is known [3] that there is a voltage drop in anode and cathode zones that is variable during a spark evolu- tion. Thus the time variable ohmic resistance can be caused by a process connected with discharge elec- trodes. A comparison of the experimental and calculated discharge currents is presented (Fig. 4). Fig. 4. Experimental [1] (on the left) and simulated (on the right) spark current ISSN 1562-6016. ВАНТ. 2018. №4(116) 147 The numerical simulation showed that the photo im- ages of spark discharge present the evolution of high- temperature region of the discharge where gas tempera- ture exceeds 10000 K (Figs. 5-7). Fig. 5. Experimental image of the spark (upper) and calculated radial temperature profile (below) at 50 ns Fig. 6. Experimental image of the spark (upper) and calculated radial temperature profile (below) at 600 ns Fig. 7. Experimental image [1] of the spark (upper) and calculated radial temperature profile (below) at 2750 ns There is temperature growth behind shock wave that is not visible in the images. The temperature rises in the range of 460…500 K behind the shock wave at 2750 ns (see Fig. 5). It is known [8] that when gas temperature is slightly higher than room temperature, gas has a specific absorption/emission spectrum. Thus the temperature growth caused by the wave is not visible because the preheated gas does not have visible spectrum. The comparisons show that we have a satisfactory agreement between experiment and theory. Radiant energy of the investigated discharge was calculated (Fig. 8). Fig. 8. Simulated time history of radiant energy Then we differentiated the radiant energy with re- spect to time to calculate radiant power. As a result we clarified that normalized intensity obtained in work [1] corresponds to the spark radiant power. A maximum of the power exceeds 1.5 kW (Fig. 9). Practically the same evolution of spark channel radi- uses we have in experimental and calculated cases (Fig. 10). There is a slight difference at initial time of the channel expansion. It is known [8] that there is a spark process of current contraction happens after breakdown. We think a time resolution of an experi- mental setup did not allow catching a contraction pro- cess. The numerical model allows investigating a time his- tory of a particle number concentration (Fig. 11). These results can be useful to check the model using specific experimental equipment. Fig. 9. Comparison of experimental intensity of lighting [1] (curve № 1) and calculated radiation power (curve № 2) ISSN 1562-6016. ВАНТ. 2018. №4(116) 148 Fig. 10. Comparison of evolutions of spark channel radius in experimental [1] (on the left) and calculated (on the right) cases Fig. 11. The simulated radial profiles of a particle num- ber concentration in the spark discharge at 2750 ns A time variation of a spark resistance was calculated (Fig 12). It was found out that the spark resistance in 0.2…0.3 μs falls below 1 Ω. Fig. 12. The time variation of the spark resistance Fig. 13. The simulated radial pressure profiles atvarious times Fig. 14. The radial density profiles at various times Fig. 15. The radial conductivity profiles at various times It is a reason that the spark resistance weakly influ- ences the discharge current in the considered case. There is a technical problem to get experimental meas- urements of pressure, density and conductivity in spark discharges at various times. We presented the simulated data of these values (Figs. 13-15). For example, the pressure data can be useful to pre- dict pressure affect in a capillary discharge. As for other data, it is possible to detach a current-conducting chan- nel from a shock wave via comparison of the conductivi- ty and pressure profiles at the same time. It is known [8] that spark energy efficiency is varia- ble. The efficiency depends on total discharge energy, electrical circuit parameters, a length of a spark gap, and an initial thermodynamic gas state in discharge, etc. The designed model allows finding out energy inputted in a spark channel (Fig. 16). Fig. 16. The simulated time history of energy input in spark discharge We calculated that an intensive energy input happens at first period of discharge. The efficiency exceeds 8% in considered case. CONCLUSIONS A satisfactory correlation between spark photo im- ages and simulated radial temperature profiles at various times confirmed that the designed numerical model of a spark evolution can be applied when the total discharge energy is below one Joule. REFERENCES 1. J. M. Palomares, A. Kohut, G. Galbács, R. Engeln, and Zs. Geretovszky. A time-resolved imaging and electrical study on a high current atmospheric pres- sure spark discharge // Journal of Applied Physics. 2015, v. 118, p. 233305. 2. S. Essmann, D. Markus, U. Maas. Investigation of the spark channel of electrical discharges near the ISSN 1562-6016. ВАНТ. 2018. №4(116) 149 minimum ignition energy // Plasma Physics and Technology. 2016, №3, p. 116-121. 3. N.М. Gegechkori. Experimental studies of spark discharge channel // Journal of Experimental and Theoretical Physics. 1951, №4, v. 21, p. 493-506. 4. K.V. Korytchenko. High-voltage electric discharge technique for the generation of shock waves and heating the reacting gas. Dr. Sc. Thesis National Technical University "Kharkov Polytechnic Insti- tute". 2014. 5. K.V. Korytchenko, E.V. Poklonskii, P.N. Krivosheev. Model of the spark discharge initiation of detonation in a mixture of hydrogen with oxygen // Russ. J. Phys. Chem. B. 2014, № 8, p. 692-700. 6. K.V. Korytchenko, V.I. Golota, D.V. Kudin, O.V. Sakun. Numerical simulation of the energy dis- tribution into the spark at the direct detonation initia- tion // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2015, №3, p. 154-158. 7. K.V. Korytchenko, E.V. Poklonskiy, D.V. Vinnikov, D.V. Kudin. Numerical simulation of gas-dynamic stage of spark discharge in oxygen // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2013, № 4, p. 155-160. 8. Yu.P. Raiser. Gas discharge physics. М.: “Nauka”, 1987, 592 p. 9. Myron N. Plooster. Shock waves from line sources // report NCAR-TN-37, November, 1968. 10. S.I. Braginski. On the theory of spark channel devel- opment // Journal of Experimental and Theoretical Physics. 1958, v. 34, № 6, p. 1548-1557. 11. S.I. Drabkina. On the theory of development of spark discharge channel // Journal of Experimental and Theoretical Physics. 1951, v. 21, № 4, p. 473- 483. 12. E.L. Petersen, R.K. Hanson. Reduced Kinetics Mechanisms for Ram Accelerator Combustion // Journal Prop. and Power. 1999, v. 15, № 4, p. 591- 600. Article received 01.06.2018 ПРОВЕРКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ РАСШИРЕНИЯ ИСКРОВОГО КАНАЛА НИЗКОЭНЕРГЕТИЧНОГО РАЗРЯДА АТМОСФЕРНОГО ДАВЛЕНИЯ К.В. Корытченко, В.С. Mарков, И.В. Поляков, Е.Д. Слепужников, Р.Г. Mелещенко Численно исследовано газодинамическое расширение низкоэнергетического искрового разряда атмо- сферного давления. Проверка математической модели проведена путем сравнения численных и эксперимен- тальных результатов. Получена удовлетворительная корреляция фотоизображений искрового разряда с рас- четными данными по расширению искрового канала. Выявлено, что полная интенсивность излучения искро- вого разряда, получаемая экспериментально, соответствует мощности излучения искры. Рассчитано распре- деление концентрации компонентов и динамика ввода энергии в искру. Исследованы распределения темпе- ратуры, давления, плотности и проводимости в радиальном сечении в разные моменты времени. ПЕРЕВІРКА МАТЕМАТИЧНОЇ МОДЕЛІ РОЗШИРЕННЯ ІСКРОВОГО КАНАЛУ НИЗЬКОЕНЕРГЕТИЧНОГО РОЗРЯДУ АТМОСФЕРНОГО ТИСКУ К.В. Коритченко, В.С. Maрков, I.В. Поляков, Є.Д. Слепужніков, Р.Г. Meлещенко Чисельно досліджено газодинамічне розширення низькоенергетичного іскрового розряду атмосферного тиску. Перевірка математичної моделі проведена шляхом порівняння чисельних та експериментальних ре- зультатів. Отримана задовільна кореляція фотозображень іскрового розряду з розрахунковими даними з ро- зширення іскрового каналу. З’ясовано, що повна інтенсивність випромінювання іскрового розряду, яка отримана експериментально, відповідає потужності випромінювання іскри. Розраховано розподіл концент- рації компонентів та динаміка вводу енергії в іскру. Досліджені розподіли температури, тиску, густини та провідності в радіальному розрізі в різні моменти часу.