Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode
Experimental results of investigations of emission spectra of the second positive system of molecular nitrogen from the anode area of negative corona discharge in air are presented. In the Trichel pulse mode, the radiation intensity distribution in the electronic-vibrational-rotational С³ Пu(0)-В₃...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147359 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode / O.V. Bolotov, V.I. Golota, Yu.V. Sitnikova // Вопросы атомной науки и техники. — 2018. — № 4. — С. 200-203. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147359 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1473592019-02-15T01:23:37Z Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode Bolotov, O.V. Golota, V.I. Sitnikova, Yu.V. Плазменно-пучковый разряд, газовый разряд и плазмохимия Experimental results of investigations of emission spectra of the second positive system of molecular nitrogen from the anode area of negative corona discharge in air are presented. In the Trichel pulse mode, the radiation intensity distribution in the electronic-vibrational-rotational С³ Пu(0)-В₃Пg(0) transitions of molecular nitrogen is analyzed. Based on the analysis of the rotational structure of the spectral lines, taking into account the Boltzmann distribution of the rotational levels population, the rotational temperature (~ 470 K) of the molecular nitrogen in the anode area is determined. A theoretical calculation of emission spectra of the R-branch rotational lines is carried out Наведено результати експериментальних досліджень спектрів випромінювання другої позитивної системи молекулярного азоту з прианодної області негативної корони в повітрі в режимі імпульсів Тричела. Проаналізовано розподіл інтенсивності випромінювання в електронно-коливально-обертальних переходах С³ Пu(0)-В₃Пg(0) молекулярного азоту. На основі аналізу обертальної структури спектральних ліній, з урахуванням больцманівського розподілу заселеності обертальних рівнів, визначена обертальна температура молекул азоту (~470 K) у прианодній області розряду. Проведено теоретичний розрахунок спектрів випромінювання обертальних ліній R-гілки обертальної структури спектра. Приведены результаты экспериментальных исследований спектров излучения второй положительной системы молекулярного азота из прианодной области отрицательной короны в воздухе в режиме импульсов Тричела. Проанализировано распределение интенсивности излучения в электронно-колебательновращательных переходах С³ Пu(0)-В₃Пg(0) молекулярного азота. На основе анализа вращательной структуры спектральных линий, с учетом больцмановского распределения заселенности вращательных уровней, определена вращательная температура молекул азота (~470 K) в прианодной области разряда. Проведен теоретический расчет спектров излучения вращательных линий R-ветви вращательной структуры спектра. 2018 Article Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode / O.V. Bolotov, V.I. Golota, Yu.V. Sitnikova // Вопросы атомной науки и техники. — 2018. — № 4. — С. 200-203. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.80.Hc http://dspace.nbuv.gov.ua/handle/123456789/147359 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия |
spellingShingle |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия Bolotov, O.V. Golota, V.I. Sitnikova, Yu.V. Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode Вопросы атомной науки и техники |
description |
Experimental results of investigations of emission spectra of the second positive system of molecular nitrogen
from the anode area of negative corona discharge in air are presented. In the Trichel pulse mode, the radiation intensity distribution in the electronic-vibrational-rotational С³
Пu(0)-В₃Пg(0) transitions of molecular nitrogen is analyzed. Based on the analysis of the rotational structure of the spectral lines, taking into account the Boltzmann distribution of the rotational levels population, the rotational temperature (~ 470 K) of the molecular nitrogen in the
anode area is determined. A theoretical calculation of emission spectra of the R-branch rotational lines is carried out |
format |
Article |
author |
Bolotov, O.V. Golota, V.I. Sitnikova, Yu.V. |
author_facet |
Bolotov, O.V. Golota, V.I. Sitnikova, Yu.V. |
author_sort |
Bolotov, O.V. |
title |
Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode |
title_short |
Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode |
title_full |
Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode |
title_fullStr |
Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode |
title_full_unstemmed |
Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode |
title_sort |
мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under тrichel pulse mode |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147359 |
citation_txt |
Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode / O.V. Bolotov, V.I. Golota, Yu.V. Sitnikova // Вопросы атомной науки и техники. — 2018. — № 4. — С. 200-203. — Бібліогр.: 5 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT bolotovov measurementofrotationaltemperatureofmolecularnitrogenintheanodeareaofnegativecoronainairundertrichelpulsemode AT golotavi measurementofrotationaltemperatureofmolecularnitrogenintheanodeareaofnegativecoronainairundertrichelpulsemode AT sitnikovayuv measurementofrotationaltemperatureofmolecularnitrogenintheanodeareaofnegativecoronainairundertrichelpulsemode |
first_indexed |
2025-07-11T02:17:21Z |
last_indexed |
2025-07-11T02:17:21Z |
_version_ |
1837315132486582272 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №4(116) 200
MEASUREMENT OF ROTATIONAL TEMPERATURE OF MOLECULAR
NITROGEN IN THE ANODE AREA OF NEGATIVE CORONA
IN AIR UNDER TRICHEL PULSE MODE
O.V. Bolotov, V.I. Golota, Yu.V. Sitnikova
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: bolotov@kipt.kharkov.ua
Experimental results of investigations of emission spectra of the second positive system of molecular nitrogen
from the anode area of negative corona discharge in air are presented. In the Trichel pulse mode, the radiation inten-
sity distribution in the electronic-vibrational-rotational С3Пu(0)-В3Пg(0) transitions of molecular nitrogen is ana-
lyzed. Based on the analysis of the rotational structure of the spectral lines, taking into account the Boltzmann dis-
tribution of the rotational levels population, the rotational temperature (~ 470 K) of the molecular nitrogen in the
anode area is determined. A theoretical calculation of emission spectra of the R-branch rotational lines is carried out.
PACS: 52.80.Hc
INTRODUCTION
In previous works [1, 2] it was shown that in the
"needle-sphere" electrode system, along with the well-
known glow near the needle cathode, there is also an
anode glow. The radiation from the anode area (~ 1 mm
from the surface of the spherical electrode) is observed.
It has been experimentally established that the existence
of radiation near the anode is also related to the process-
es that take place at the cathode. The authors suggested
the existence of a perturbation wave in the region of
increased field strength near the anode area, which was
experimentally proved. The radiation intensity increases
monotonically as the wave front moves deeper into the
discharge gap toward the anode. At the same time, the
intensity of radiation from the anode area is significant-
ly low than the radiation intensity from the area of the
needle cathode. The radiation from the anode area al-
lows to realize various optical methods for diagnostics
of a gas discharge characteristics. Spectroscopic studies
of the radiation of a gas discharge make it possible to
determine not only the local characteristics of the dis-
charge (in particular, the electron distribution function),
but also the temperature of the heavy gas particles. It is
of interest to measure the rotational temperature of gas
molecules, which value is equal to translational temper-
ature. By determining the temperature from the anode
area of the discharge, one can obtain information on the
intensity of the ionization processes and analyze the
effect of the gas temperature on the processes responsi-
ble for the transition of the discharge to the spark-
breakdown stage. This will provide additional infor-
mation for understanding the mechanisms of the for-
mation of a stable sequence of the Trichel current puls-
es, and also for improving existing theoretical models of
discharge in the nonstationary stage of burning.
1. EXPERIMENTAL SETUP
The object of the study in all experiments was a
negative corona discharge in air at atmospheric pressure
in the "needle-sphere" electrode geometry. The dis-
charge was maintained in the Trichel pulse mode. The
rotational temperature value was determined from the
electron-vibrational-rotational transitions of the emis-
sion spectrum of the second positive nitrogen system.
Investigations of the emission spectra from the anode
area in the wavelength range 300…400 nm were carried
out at the setup schematically shown in Fig. 1.
Fig. 1. 1 − ballast resistor R = 130 kΩ; 2 − discharge
chamber; 3 − monochromator spectrograph SolarTii
MSDD-1000; 4 − photomultiplier (PMT)-Hamamatsu
R9110; 5 − stabilized high-voltage power supply
for PMT; 6 − capacitive voltage filter of C = 1000 pF;
7 − HV voltmeter С196; 8 − micro ammeter M906;
9 − camera Olympus C 7070; 10 − oscilloscope
Tektronix TDS-2024; 11 − computer PC;
12 − ADC Velleman PCS 500; 13 − DC amplifier
IEC-CA3; 14 − fluorite (CaF2) condenser
Stabilized adjustable high voltage power supply unit
of 0…15 kV range was used to initiate the discharge
burning. The voltage of the discharge gap was measured
with a HV voltmeter. The average discharge current was
measured with a micro ammeter. In the experiments, the
electrode system "needle-sphere" was used. The cathode
was a copper needle with a cross section diameter of
1 mm. The stainless steel anode was made in the form
of a sphere with a diameter of 10 mm. The discharge
was studied at the discharge gap of d = 7 mm. To meas-
ure the time and amplitude characteristics of the current
pulses, calibrated current shunts with a nominal value of
50 Ω were used. The current shunts were calibrated us-
ing a Tektronix CT-1 calibration shunt with a signal
bandwidth of 25 kHz to 1 GHz. A signal from the cur-
rent shunts was analyzed with a digital oscilloscope 10
Tektronix TDS-2024B. The bandwidth of the oscillo-
scope was 200 MHz, sampling frequency 1 GS/s. Regis-
tration of radiation from the entire discharge gap was
carried out with a digital camera.
Spectroscopic studies of the discharge were carried
out at optical stand based on a double-dispersion mono-
ISSN 1562-6016. ВАНТ. 2018. №4(116) 201
chromator-spectrograph "Solar-Tii" MSDD-1000. The
registration of radiation from various areas of the dis-
charge gap was carried out with a help of a slits system.
To reach high spectral resolution, a double diffraction
grating of 2.400 grooves / mm with a linear dispersion
of 0.41 nm/mm was used. On the output slit of the mon-
ochromator, a high-speed photomultiplier Hamamatsu
R9110 was installed. PMT characteristics: spectral sen-
sitivity range of 185…900 nm, signal pulse rise time 2.2
ns. The signal from the PMT was transferred to the in-
put of the DC amplifier IEC-CA3, which has the follow-
ing characteristics: range of the conversion factor k −
(10-10…10-5) A/B, the amplitude of the internal noise −
not more than 1 pA, thermal drift of the output voltage −
not more than 0.15 mV/deg. The signal from the ampli-
fier was transferred to the input of the Velleman PCS
500 ADC, which was connected to a computer. The PC-
Lab2000 software package allowed to display digitized
data (visualize the spectrum) from the ADC Velleman
PCS 500 on a computer monitor in real-time graphical
mode, and also to record digitized data in the computer's
memory.
2. EXPERIMENTAL RESULTS
The spectra were recorded from the anode area of
discharge zone (of ~ 1 mm from the spherical anode)
during the burning of the discharge in the Trichel cur-
rent pulse mode. In the wavelength range 300…400 nm,
emission spectra corresponding to the second positive
molecular-nitrogen system (C3Πu-B3Pg transitions) were
recorded [3]. The discharge gap was d = 7 mm. The
monochromator slits were set to 0.05 mm (output) and
0.182 mm (input) with an inverse linear dispersion of
the grating of 0.41 nm/mm.
2.1. DISCHARGE CURRENT
CHARACTERISTICS
At experiments it is important to control the steady-
state burning of the discharge. For this purpose, special
treatment of the needle electrode was carried out before
the experiments. Also the special electrode materials
were selected and surface cleaning was carried out. The
discharge current waveforms were registered in online
mode with the oscilloscope. Also the current pulses rep-
etition rate was measured. The steady-state repetition
rate of the current pulses, and the unchanged shape of
the current pulses waveforms, demonstrated the stable
burning mode of the discharge.
2.2. OPTICAL AND SPECTRAL DIAGNOSTICS
OF DISCHARGE RADIATION
Before carrying out the spectral measurements, the
optimum diameter of the spherical anode, at which max-
imum radiation from the anode area is observed, was
determined experimentally. It has been established that
the optimal diameter of a spherical anode is 10 mm.
Fig. 2 shows a photo of the discharge in the electrode
system "needle-sphere" in the Trichel pulse mode (A),
as well as a fragment (B) of the emission spectrum of
the C3Πu (0)-B3Πg (0) transition in the wavelength range
334…337.3 nm. A spectrum was recorded from the an-
ode area of the discharge gap. In the above photo, two
clearly visible glowing regions are shown: cathode and
anode.
a b
Fig. 2. Photo of the negative corona in the “needle-
sphere” electrode system in the Trichel pulse mode.
Exposure time 1 min (a); fragment of the emission spec-
trum of the C3Πu(0)-B3Πg(0) transition (b). The average
discharge current is Ic = 45 μA, the voltage applied
to the discharge gap is U = 9.2 kV
To determine the values of the rotational tempera-
ture, the partially resolved rotational structure of C3Πu-
B3Πg transition spectrum was used. For the analysis of
the spectra obtained in the experiment, it is necessary to
use only separate lines of the R branch with range of
rotational quantum numbers J = 20…29. In the remain-
ing area of the spectrum of the electron-vibrational-
rotational transition (0-0), the lines P, Q and R branches
have superposition, which makes this region unsuitable
for analysis.
For a more detailed analysis of the rotational struc-
ture of the spectrum, individual fragments of the spec-
trum were recorded at the maximum sensitivity of the
ADC with respect to the input signal and with the use of
an DC amplifier with a gain of up to k = 1010. To in-
crease the radiation intensity, due to a decrease in losses
in the optical path, a short-focus fluorite (CaF2) conden-
ser was used. The registered fragment of the rotational
structure of the spectrum in the wavelength range
334…335.6 nm is shown in Fig. 3. The spectrum is reg-
istered from the anode area of the negative corona in the
Trichel pulse mode.
Fig. 3. Fragment of the emission spectrum in the
wavelength range 334…335.6 nm. The average
discharge current is Ic = 45 μA, the voltage applied
to the discharge gap is U = 9.2 kV
Analysis of the obtained spectrum made it possible
to determine the value of the rotational temperature of
nitrogen molecules in the anode area of the discharge.
To determine the correspondence of the wavelengths of
ISSN 1562-6016. ВАНТ. 2018. №4(116) 202
the rotational lines to the rotational quantum numbers J,
the Fortrat diagrams were calculated. For the electronic
transition between C3Πu and B3Πg states, changes in the
value ΔJ = -1, 0, +1, which generate P, Q and R spec-
trum branches, are allowed [4]:
ν
Q(J)
= ν
0
+(B'
v+1
- B"
v
)J + (B'
v+1
– B"
v
) J
2
, (1)
ν
P(J)
= ν
0
– (B'
v+1
+ B"
v
)J + (B'
v+1
– B"
v
) J
2
, (2)
ν
R(J)
= ν
0
+ 2B'
v+1
+ (3B'
v+1
– B"
v
)J + (B'
v+1
– B"
v
) J
2
, (3)
where ν0 is the wave number of the vibrational transition.
Calculation of the intensities of the rotational lines
of electron-vibrational transitions was carried out taking
into account the anharmonicity of vibrations of the ni-
trogen molecule and in the approximation of a non-rigid
rotator for rotational energy
( ) ( ) 2
1 1jF B J J D J J= ⋅ ⋅ + − ⋅ ⋅ + (4)
The radiation intensity of an individual electron-
vibrational-rotational band is determined from expression
' '' ' ' ''J J J J J
hcI N A
λ
= ⋅ ⋅ , (5)
where 'J
N − the population of the upper vibrational
level, ' ''J J
A − the transition probability, which are de-
termined from expressions:
'
' ' ' '
' ( 1)~ (2 1) expe e
J
rot rot
B B J JN J
kT kT
+
⋅ + ⋅ −
, (6)
'
4
' ''
3 '''
64
3 2 1
J J
J J
SA
h J
π
λ
= ⋅
+
, (7)
where ' ''J JS is the intensity factor of Henle-London [4].
Thus, for the intensity of the rotational line of the
electron-vibrational band, we obtain the following ex-
pression
' ' ' '
4
' ''
( 1)( ) ~ expe e
J J
rot rot
B B J JI S
kT kT
λ λ− +
⋅ ⋅ ⋅ −
. (8)
It is important to note the change in the intensity ra-
tio in the spectrum of P, Q, R branches, which must be
taken into account when using experimental data to de-
termine the rotational temperature of nitrogen mole-
cules.
Fig. 4. Calculated spectrum of the distribution of the
relative intensities of the R branch with a change in the
rotational temperature in the range from 300 to 600 K.
The transition is C3Πu(0)-B3Πg(0)
Below in Fig. 4 the calculated emission spectra of
the rotational lines of the R branches of the electron-
vibrational transition are shown. The spectra are calcu-
lated for different values of rotational temperature from
300 to 600 K in 100 K steps.
In the wavelength range 332…335 nm, the R-branch
dominates in the spectrum, while in the region of the
cant the lines thicken, and, therefore, the branches have
superposition. It is important to note that R-branch spec-
trum have region without superposition, which is con-
venient for analysis when determining the rotational
temperature by the relative intensity of the lines.
In the Boltzmann distribution of the rotational levels
population of excited electron-vibrational state, there is
a simple relationship between the experimentally meas-
ured line intensity and the rotational temperature Trot of
the excited electron-vibrational state
4
' ''
( )ln ( ')
*j j r
I hc F j const
S kT
λ
n
= − ⋅ + , (9)
where F (j´) is the energy of the upper rotational level in
cm-1, k is the Boltzmann constant, and c is the speed of
light.
The linear dependence
4
' ''
( )ln
j j
I
S
λ
n
on F (j´) is an ex-
perimental confirmation of the existence of the Boltz-
mann distribution of the rotational levels population. It
is important to note that the very weak intensity of the
rotational lines of the R-branch significantly compli-
cates analysis. Thus a large amplification of the output
signal from a PMT is required. In this case, it is neces-
sary to increase the signal-to-noise ratio and to gain a
large statistical array of data for processing and analy-
sis. Fig. 5. shows the Boltzmann plot obtained from
linear approximation (using the program package
ORIGIN Pro8.5) of experimental data in the analysis of
the R-branch lines of rotational structure of emission
spectrum. The diagram shows the linear dependence
4
' ''
( )ln
j j
I
S
λ
n
on F (J '). The slope angle of the straight line
corresponds to the value of the rotational temperature of
nitrogen molecules.
Fig. 5. Boltzmann plot obtained from the analysis
of the spectra of the electron-vibrational transition
of C3Πu(0)-B3Πg(0) in the wavelength range
334…335.6 nm. The average discharge current
is Ic = 45 μA, the voltage applied
to the discharge gap is U = 9.2 kV
ISSN 1562-6016. ВАНТ. 2018. №4(116) 203
It is established from the plot shown in Fig. 5 that
the rotational temperature of the nitrogen molecules in
the anode area of the discharge is Trot ~ 470 K. Such
value of temperature indicates the area of low-
temperature plasma in which efficient plasma-chemical
processes can occur. At the same time, the burning
mode of the discharge is high stable. To determine the
conditions for the transition of the discharge to the stage
of a spark breakdown, and also to optimize the electrode
system, additional investigations are required. In addi-
tion, it is necessary to check the change of the gas tem-
perature in the discharge gap over a wide range of volt-
ages applied to the electrode system. Such methodologi-
cal tasks require additional research.
CONCLUSIONS
In order to determine the principle of the stable se-
quence of Trichel current pulses, and to optimize the
geometry of the electrode system, the emission spectra
of the second positive nitrogen system from the anode
area of the discharge are investigated. The distribution
of radiation intensity in electron-vibrational-rotational
bands corresponding to molecular nitrogen transitions
from state C3Πu(0) to state B3Πg(0) is analyzed.
A theoretical calculation of the intensity of rotational
lines in the non-rigid rotator approximation is carried
out. Based on the analysis of the rotational structure of
the spectral lines, the rotational temperature (~470 K) of
the molecular nitrogen in the anode area of discharge is
determined.
REFERENCES
1. V.I. Karas’, V.I. Golota, O.V. Bolotov, B.B.
Kadolin, D.V. Kudin. Specific features of radiation
from a negative air corona operating in the Trichel-
pulse mode // Plasma Physics Reports. 2008, v. 34,
№ 10, p. 879-884.
2. V.I. Golota, V.N. Ostroushko, O.V. Bolotov,
V.I. Karas', B.B. Kadolin. Radiation from drift zone
of negative corona in Trichel pulse mode // Prob-
lems of Atomic Science and Technology. Series
“Plasma Electronics and New Methods of Accelera-
tion”. 2010, № 4, p. 181-185.
3. R.W.B. Pearse, A.G. Gaydon. The identification of
molecular spectra // Chapman and Hall, London,
1976.
4. B.M. Smirnov A.S. Yatsenko. Parametry gazovykh
dimerov // Khimiya plazmy: Sb. st. M.: “Ener-
goatomizdat”, 1989, iss. 15, p. 93 (in Russian).
5. L.A. Kuznetsova, N.Ye. Kuz'menko. Veroyatnosti
opticheskikh perekhodov elektronno-kolebatel'no-
vrashchatel'nykh spektrov dvukhatomnykh molekul.
// UFN. 1974, v. 112, iss. 2 (in Russian).
Article received 04.06.2018
ИЗМЕРЕНИЕ ВРАЩАТЕЛЬНОЙ ТЕМПЕРАТУРЫ АЗОТА В ПРИАНОДНОЙ ОБЛАСТИ
ОТРИЦАТЕЛЬНОЙ КОРОНЫ В ВОЗДУХЕ В РЕЖИМЕ ИМПУЛЬСОВ ТРИЧЕЛА
О.В. Болотов, В.И. Голота, Ю.В. Ситникова
Приведены результаты экспериментальных исследований спектров излучения второй положительной си-
стемы молекулярного азота из прианодной области отрицательной короны в воздухе в режиме импульсов
Тричела. Проанализировано распределение интенсивности излучения в электронно-колебательно-
вращательных переходах С3Пu(0)-В3Пg(0) молекулярного азота. На основе анализа вращательной структуры
спектральных линий, с учетом больцмановского распределения заселенности вращательных уровней, опре-
делена вращательная температура молекул азота (~470 K) в прианодной области разряда. Проведен теорети-
ческий расчет спектров излучения вращательных линий R-ветви вращательной структуры спектра.
ВИМІРЮВАННЯ ОБЕРТАЛЬНОЇ ТЕМПЕРАТУРИ АЗОТУ В ПРИАНОДНІЙ ОБЛАСТІ
НЕГАТИВНОЇ КОРОНИ В ПОВІТРІ В РЕЖИМІ ІМПУЛЬСІВ ТРИЧЕЛА
О.В. Болотов, В.І. Голота, Ю.В. Сiтнікова
Наведено результати експериментальних досліджень спектрів випромінювання другої позитивної систе-
ми молекулярного азоту з прианодної області негативної корони в повітрі в режимі імпульсів Тричела. Про-
аналізовано розподіл інтенсивності випромінювання в електронно-коливально-обертальних переходах
С3Пu(0)-В3Пg(0) молекулярного азоту. На основі аналізу обертальної структури спектральних ліній, з ураху-
ванням больцманівського розподілу заселеності обертальних рівнів, визначена обертальна температура мо-
лекул азоту (~470 K) у прианодній області розряду. Проведено теоретичний розрахунок спектрів випромі-
нювання обертальних ліній R-гілки обертальної структури спектра.
1. experimental Setup
2. experimental results
conclusionS
|