Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode

Experimental results of investigations of emission spectra of the second positive system of molecular nitrogen from the anode area of negative corona discharge in air are presented. In the Trichel pulse mode, the radiation intensity distribution in the electronic-vibrational-rotational С³ Пu(0)-В₃...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Bolotov, O.V., Golota, V.I., Sitnikova, Yu.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/147359
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode / O.V. Bolotov, V.I. Golota, Yu.V. Sitnikova // Вопросы атомной науки и техники. — 2018. — № 4. — С. 200-203. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147359
record_format dspace
spelling irk-123456789-1473592019-02-15T01:23:37Z Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode Bolotov, O.V. Golota, V.I. Sitnikova, Yu.V. Плазменно-пучковый разряд, газовый разряд и плазмохимия Experimental results of investigations of emission spectra of the second positive system of molecular nitrogen from the anode area of negative corona discharge in air are presented. In the Trichel pulse mode, the radiation intensity distribution in the electronic-vibrational-rotational С³ Пu(0)-В₃Пg(0) transitions of molecular nitrogen is analyzed. Based on the analysis of the rotational structure of the spectral lines, taking into account the Boltzmann distribution of the rotational levels population, the rotational temperature (~ 470 K) of the molecular nitrogen in the anode area is determined. A theoretical calculation of emission spectra of the R-branch rotational lines is carried out Наведено результати експериментальних досліджень спектрів випромінювання другої позитивної системи молекулярного азоту з прианодної області негативної корони в повітрі в режимі імпульсів Тричела. Проаналізовано розподіл інтенсивності випромінювання в електронно-коливально-обертальних переходах С³ Пu(0)-В₃Пg(0) молекулярного азоту. На основі аналізу обертальної структури спектральних ліній, з урахуванням больцманівського розподілу заселеності обертальних рівнів, визначена обертальна температура молекул азоту (~470 K) у прианодній області розряду. Проведено теоретичний розрахунок спектрів випромінювання обертальних ліній R-гілки обертальної структури спектра. Приведены результаты экспериментальных исследований спектров излучения второй положительной системы молекулярного азота из прианодной области отрицательной короны в воздухе в режиме импульсов Тричела. Проанализировано распределение интенсивности излучения в электронно-колебательновращательных переходах С³ Пu(0)-В₃Пg(0) молекулярного азота. На основе анализа вращательной структуры спектральных линий, с учетом больцмановского распределения заселенности вращательных уровней, определена вращательная температура молекул азота (~470 K) в прианодной области разряда. Проведен теоретический расчет спектров излучения вращательных линий R-ветви вращательной структуры спектра. 2018 Article Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode / O.V. Bolotov, V.I. Golota, Yu.V. Sitnikova // Вопросы атомной науки и техники. — 2018. — № 4. — С. 200-203. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.80.Hc http://dspace.nbuv.gov.ua/handle/123456789/147359 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Bolotov, O.V.
Golota, V.I.
Sitnikova, Yu.V.
Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode
Вопросы атомной науки и техники
description Experimental results of investigations of emission spectra of the second positive system of molecular nitrogen from the anode area of negative corona discharge in air are presented. In the Trichel pulse mode, the radiation intensity distribution in the electronic-vibrational-rotational С³ Пu(0)-В₃Пg(0) transitions of molecular nitrogen is analyzed. Based on the analysis of the rotational structure of the spectral lines, taking into account the Boltzmann distribution of the rotational levels population, the rotational temperature (~ 470 K) of the molecular nitrogen in the anode area is determined. A theoretical calculation of emission spectra of the R-branch rotational lines is carried out
format Article
author Bolotov, O.V.
Golota, V.I.
Sitnikova, Yu.V.
author_facet Bolotov, O.V.
Golota, V.I.
Sitnikova, Yu.V.
author_sort Bolotov, O.V.
title Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode
title_short Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode
title_full Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode
title_fullStr Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode
title_full_unstemmed Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode
title_sort мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under тrichel pulse mode
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url http://dspace.nbuv.gov.ua/handle/123456789/147359
citation_txt Мeasurement of rotational temperature of molecular nitrogen in the anode area of negative corona in air under Тrichel pulse mode / O.V. Bolotov, V.I. Golota, Yu.V. Sitnikova // Вопросы атомной науки и техники. — 2018. — № 4. — С. 200-203. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bolotovov measurementofrotationaltemperatureofmolecularnitrogenintheanodeareaofnegativecoronainairundertrichelpulsemode
AT golotavi measurementofrotationaltemperatureofmolecularnitrogenintheanodeareaofnegativecoronainairundertrichelpulsemode
AT sitnikovayuv measurementofrotationaltemperatureofmolecularnitrogenintheanodeareaofnegativecoronainairundertrichelpulsemode
first_indexed 2025-07-11T02:17:21Z
last_indexed 2025-07-11T02:17:21Z
_version_ 1837315132486582272
fulltext ISSN 1562-6016. ВАНТ. 2018. №4(116) 200 MEASUREMENT OF ROTATIONAL TEMPERATURE OF MOLECULAR NITROGEN IN THE ANODE AREA OF NEGATIVE CORONA IN AIR UNDER TRICHEL PULSE MODE O.V. Bolotov, V.I. Golota, Yu.V. Sitnikova National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: bolotov@kipt.kharkov.ua Experimental results of investigations of emission spectra of the second positive system of molecular nitrogen from the anode area of negative corona discharge in air are presented. In the Trichel pulse mode, the radiation inten- sity distribution in the electronic-vibrational-rotational С3Пu(0)-В3Пg(0) transitions of molecular nitrogen is ana- lyzed. Based on the analysis of the rotational structure of the spectral lines, taking into account the Boltzmann dis- tribution of the rotational levels population, the rotational temperature (~ 470 K) of the molecular nitrogen in the anode area is determined. A theoretical calculation of emission spectra of the R-branch rotational lines is carried out. PACS: 52.80.Hc INTRODUCTION In previous works [1, 2] it was shown that in the "needle-sphere" electrode system, along with the well- known glow near the needle cathode, there is also an anode glow. The radiation from the anode area (~ 1 mm from the surface of the spherical electrode) is observed. It has been experimentally established that the existence of radiation near the anode is also related to the process- es that take place at the cathode. The authors suggested the existence of a perturbation wave in the region of increased field strength near the anode area, which was experimentally proved. The radiation intensity increases monotonically as the wave front moves deeper into the discharge gap toward the anode. At the same time, the intensity of radiation from the anode area is significant- ly low than the radiation intensity from the area of the needle cathode. The radiation from the anode area al- lows to realize various optical methods for diagnostics of a gas discharge characteristics. Spectroscopic studies of the radiation of a gas discharge make it possible to determine not only the local characteristics of the dis- charge (in particular, the electron distribution function), but also the temperature of the heavy gas particles. It is of interest to measure the rotational temperature of gas molecules, which value is equal to translational temper- ature. By determining the temperature from the anode area of the discharge, one can obtain information on the intensity of the ionization processes and analyze the effect of the gas temperature on the processes responsi- ble for the transition of the discharge to the spark- breakdown stage. This will provide additional infor- mation for understanding the mechanisms of the for- mation of a stable sequence of the Trichel current puls- es, and also for improving existing theoretical models of discharge in the nonstationary stage of burning. 1. EXPERIMENTAL SETUP The object of the study in all experiments was a negative corona discharge in air at atmospheric pressure in the "needle-sphere" electrode geometry. The dis- charge was maintained in the Trichel pulse mode. The rotational temperature value was determined from the electron-vibrational-rotational transitions of the emis- sion spectrum of the second positive nitrogen system. Investigations of the emission spectra from the anode area in the wavelength range 300…400 nm were carried out at the setup schematically shown in Fig. 1. Fig. 1. 1 − ballast resistor R = 130 kΩ; 2 − discharge chamber; 3 − monochromator spectrograph SolarTii MSDD-1000; 4 − photomultiplier (PMT)-Hamamatsu R9110; 5 − stabilized high-voltage power supply for PMT; 6 − capacitive voltage filter of C = 1000 pF; 7 − HV voltmeter С196; 8 − micro ammeter M906; 9 − camera Olympus C 7070; 10 − oscilloscope Tektronix TDS-2024; 11 − computer PC; 12 − ADC Velleman PCS 500; 13 − DC amplifier IEC-CA3; 14 − fluorite (CaF2) condenser Stabilized adjustable high voltage power supply unit of 0…15 kV range was used to initiate the discharge burning. The voltage of the discharge gap was measured with a HV voltmeter. The average discharge current was measured with a micro ammeter. In the experiments, the electrode system "needle-sphere" was used. The cathode was a copper needle with a cross section diameter of 1 mm. The stainless steel anode was made in the form of a sphere with a diameter of 10 mm. The discharge was studied at the discharge gap of d = 7 mm. To meas- ure the time and amplitude characteristics of the current pulses, calibrated current shunts with a nominal value of 50 Ω were used. The current shunts were calibrated us- ing a Tektronix CT-1 calibration shunt with a signal bandwidth of 25 kHz to 1 GHz. A signal from the cur- rent shunts was analyzed with a digital oscilloscope 10 Tektronix TDS-2024B. The bandwidth of the oscillo- scope was 200 MHz, sampling frequency 1 GS/s. Regis- tration of radiation from the entire discharge gap was carried out with a digital camera. Spectroscopic studies of the discharge were carried out at optical stand based on a double-dispersion mono- ISSN 1562-6016. ВАНТ. 2018. №4(116) 201 chromator-spectrograph "Solar-Tii" MSDD-1000. The registration of radiation from various areas of the dis- charge gap was carried out with a help of a slits system. To reach high spectral resolution, a double diffraction grating of 2.400 grooves / mm with a linear dispersion of 0.41 nm/mm was used. On the output slit of the mon- ochromator, a high-speed photomultiplier Hamamatsu R9110 was installed. PMT characteristics: spectral sen- sitivity range of 185…900 nm, signal pulse rise time 2.2 ns. The signal from the PMT was transferred to the in- put of the DC amplifier IEC-CA3, which has the follow- ing characteristics: range of the conversion factor k − (10-10…10-5) A/B, the amplitude of the internal noise − not more than 1 pA, thermal drift of the output voltage − not more than 0.15 mV/deg. The signal from the ampli- fier was transferred to the input of the Velleman PCS 500 ADC, which was connected to a computer. The PC- Lab2000 software package allowed to display digitized data (visualize the spectrum) from the ADC Velleman PCS 500 on a computer monitor in real-time graphical mode, and also to record digitized data in the computer's memory. 2. EXPERIMENTAL RESULTS The spectra were recorded from the anode area of discharge zone (of ~ 1 mm from the spherical anode) during the burning of the discharge in the Trichel cur- rent pulse mode. In the wavelength range 300…400 nm, emission spectra corresponding to the second positive molecular-nitrogen system (C3Πu-B3Pg transitions) were recorded [3]. The discharge gap was d = 7 mm. The monochromator slits were set to 0.05 mm (output) and 0.182 mm (input) with an inverse linear dispersion of the grating of 0.41 nm/mm. 2.1. DISCHARGE CURRENT CHARACTERISTICS At experiments it is important to control the steady- state burning of the discharge. For this purpose, special treatment of the needle electrode was carried out before the experiments. Also the special electrode materials were selected and surface cleaning was carried out. The discharge current waveforms were registered in online mode with the oscilloscope. Also the current pulses rep- etition rate was measured. The steady-state repetition rate of the current pulses, and the unchanged shape of the current pulses waveforms, demonstrated the stable burning mode of the discharge. 2.2. OPTICAL AND SPECTRAL DIAGNOSTICS OF DISCHARGE RADIATION Before carrying out the spectral measurements, the optimum diameter of the spherical anode, at which max- imum radiation from the anode area is observed, was determined experimentally. It has been established that the optimal diameter of a spherical anode is 10 mm. Fig. 2 shows a photo of the discharge in the electrode system "needle-sphere" in the Trichel pulse mode (A), as well as a fragment (B) of the emission spectrum of the C3Πu (0)-B3Πg (0) transition in the wavelength range 334…337.3 nm. A spectrum was recorded from the an- ode area of the discharge gap. In the above photo, two clearly visible glowing regions are shown: cathode and anode. a b Fig. 2. Photo of the negative corona in the “needle- sphere” electrode system in the Trichel pulse mode. Exposure time 1 min (a); fragment of the emission spec- trum of the C3Πu(0)-B3Πg(0) transition (b). The average discharge current is Ic = 45 μA, the voltage applied to the discharge gap is U = 9.2 kV To determine the values of the rotational tempera- ture, the partially resolved rotational structure of C3Πu- B3Πg transition spectrum was used. For the analysis of the spectra obtained in the experiment, it is necessary to use only separate lines of the R branch with range of rotational quantum numbers J = 20…29. In the remain- ing area of the spectrum of the electron-vibrational- rotational transition (0-0), the lines P, Q and R branches have superposition, which makes this region unsuitable for analysis. For a more detailed analysis of the rotational struc- ture of the spectrum, individual fragments of the spec- trum were recorded at the maximum sensitivity of the ADC with respect to the input signal and with the use of an DC amplifier with a gain of up to k = 1010. To in- crease the radiation intensity, due to a decrease in losses in the optical path, a short-focus fluorite (CaF2) conden- ser was used. The registered fragment of the rotational structure of the spectrum in the wavelength range 334…335.6 nm is shown in Fig. 3. The spectrum is reg- istered from the anode area of the negative corona in the Trichel pulse mode. Fig. 3. Fragment of the emission spectrum in the wavelength range 334…335.6 nm. The average discharge current is Ic = 45 μA, the voltage applied to the discharge gap is U = 9.2 kV Analysis of the obtained spectrum made it possible to determine the value of the rotational temperature of nitrogen molecules in the anode area of the discharge. To determine the correspondence of the wavelengths of ISSN 1562-6016. ВАНТ. 2018. №4(116) 202 the rotational lines to the rotational quantum numbers J, the Fortrat diagrams were calculated. For the electronic transition between C3Πu and B3Πg states, changes in the value ΔJ = -1, 0, +1, which generate P, Q and R spec- trum branches, are allowed [4]: ν Q(J) = ν 0 +(B' v+1 - B" v )J + (B' v+1 – B" v ) J 2 , (1) ν P(J) = ν 0 – (B' v+1 + B" v )J + (B' v+1 – B" v ) J 2 , (2) ν R(J) = ν 0 + 2B' v+1 + (3B' v+1 – B" v )J + (B' v+1 – B" v ) J 2 , (3) where ν0 is the wave number of the vibrational transition. Calculation of the intensities of the rotational lines of electron-vibrational transitions was carried out taking into account the anharmonicity of vibrations of the ni- trogen molecule and in the approximation of a non-rigid rotator for rotational energy ( ) ( ) 2 1 1jF B J J D J J= ⋅ ⋅ + − ⋅ ⋅ +   (4) The radiation intensity of an individual electron- vibrational-rotational band is determined from expression ' '' ' ' ''J J J J J hcI N A λ = ⋅ ⋅ , (5) where 'J N − the population of the upper vibrational level, ' ''J J A − the transition probability, which are de- termined from expressions: ' ' ' ' ' ' ( 1)~ (2 1) expe e J rot rot B B J JN J kT kT  + ⋅ + ⋅ −    , (6) ' 4 ' '' 3 ''' 64 3 2 1 J J J J SA h J π λ = ⋅ + , (7) where ' ''J JS is the intensity factor of Henle-London [4]. Thus, for the intensity of the rotational line of the electron-vibrational band, we obtain the following ex- pression ' ' ' ' 4 ' '' ( 1)( ) ~ expe e J J rot rot B B J JI S kT kT λ λ−  + ⋅ ⋅ ⋅ −    . (8) It is important to note the change in the intensity ra- tio in the spectrum of P, Q, R branches, which must be taken into account when using experimental data to de- termine the rotational temperature of nitrogen mole- cules. Fig. 4. Calculated spectrum of the distribution of the relative intensities of the R branch with a change in the rotational temperature in the range from 300 to 600 K. The transition is C3Πu(0)-B3Πg(0) Below in Fig. 4 the calculated emission spectra of the rotational lines of the R branches of the electron- vibrational transition are shown. The spectra are calcu- lated for different values of rotational temperature from 300 to 600 K in 100 K steps. In the wavelength range 332…335 nm, the R-branch dominates in the spectrum, while in the region of the cant the lines thicken, and, therefore, the branches have superposition. It is important to note that R-branch spec- trum have region without superposition, which is con- venient for analysis when determining the rotational temperature by the relative intensity of the lines. In the Boltzmann distribution of the rotational levels population of excited electron-vibrational state, there is a simple relationship between the experimentally meas- ured line intensity and the rotational temperature Trot of the excited electron-vibrational state 4 ' '' ( )ln ( ') *j j r I hc F j const S kT λ n = − ⋅ + , (9) where F (j´) is the energy of the upper rotational level in cm-1, k is the Boltzmann constant, and c is the speed of light. The linear dependence 4 ' '' ( )ln j j I S λ n on F (j´) is an ex- perimental confirmation of the existence of the Boltz- mann distribution of the rotational levels population. It is important to note that the very weak intensity of the rotational lines of the R-branch significantly compli- cates analysis. Thus a large amplification of the output signal from a PMT is required. In this case, it is neces- sary to increase the signal-to-noise ratio and to gain a large statistical array of data for processing and analy- sis. Fig. 5. shows the Boltzmann plot obtained from linear approximation (using the program package ORIGIN Pro8.5) of experimental data in the analysis of the R-branch lines of rotational structure of emission spectrum. The diagram shows the linear dependence 4 ' '' ( )ln j j I S λ n on F (J '). The slope angle of the straight line corresponds to the value of the rotational temperature of nitrogen molecules. Fig. 5. Boltzmann plot obtained from the analysis of the spectra of the electron-vibrational transition of C3Πu(0)-B3Πg(0) in the wavelength range 334…335.6 nm. The average discharge current is Ic = 45 μA, the voltage applied to the discharge gap is U = 9.2 kV ISSN 1562-6016. ВАНТ. 2018. №4(116) 203 It is established from the plot shown in Fig. 5 that the rotational temperature of the nitrogen molecules in the anode area of the discharge is Trot ~ 470 K. Such value of temperature indicates the area of low- temperature plasma in which efficient plasma-chemical processes can occur. At the same time, the burning mode of the discharge is high stable. To determine the conditions for the transition of the discharge to the stage of a spark breakdown, and also to optimize the electrode system, additional investigations are required. In addi- tion, it is necessary to check the change of the gas tem- perature in the discharge gap over a wide range of volt- ages applied to the electrode system. Such methodologi- cal tasks require additional research. CONCLUSIONS In order to determine the principle of the stable se- quence of Trichel current pulses, and to optimize the geometry of the electrode system, the emission spectra of the second positive nitrogen system from the anode area of the discharge are investigated. The distribution of radiation intensity in electron-vibrational-rotational bands corresponding to molecular nitrogen transitions from state C3Πu(0) to state B3Πg(0) is analyzed. A theoretical calculation of the intensity of rotational lines in the non-rigid rotator approximation is carried out. Based on the analysis of the rotational structure of the spectral lines, the rotational temperature (~470 K) of the molecular nitrogen in the anode area of discharge is determined. REFERENCES 1. V.I. Karas’, V.I. Golota, O.V. Bolotov, B.B. Kadolin, D.V. Kudin. Specific features of radiation from a negative air corona operating in the Trichel- pulse mode // Plasma Physics Reports. 2008, v. 34, № 10, p. 879-884. 2. V.I. Golota, V.N. Ostroushko, O.V. Bolotov, V.I. Karas', B.B. Kadolin. Radiation from drift zone of negative corona in Trichel pulse mode // Prob- lems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Accelera- tion”. 2010, № 4, p. 181-185. 3. R.W.B. Pearse, A.G. Gaydon. The identification of molecular spectra // Chapman and Hall, London, 1976. 4. B.M. Smirnov A.S. Yatsenko. Parametry gazovykh dimerov // Khimiya plazmy: Sb. st. M.: “Ener- goatomizdat”, 1989, iss. 15, p. 93 (in Russian). 5. L.A. Kuznetsova, N.Ye. Kuz'menko. Veroyatnosti opticheskikh perekhodov elektronno-kolebatel'no- vrashchatel'nykh spektrov dvukhatomnykh molekul. // UFN. 1974, v. 112, iss. 2 (in Russian). Article received 04.06.2018 ИЗМЕРЕНИЕ ВРАЩАТЕЛЬНОЙ ТЕМПЕРАТУРЫ АЗОТА В ПРИАНОДНОЙ ОБЛАСТИ ОТРИЦАТЕЛЬНОЙ КОРОНЫ В ВОЗДУХЕ В РЕЖИМЕ ИМПУЛЬСОВ ТРИЧЕЛА О.В. Болотов, В.И. Голота, Ю.В. Ситникова Приведены результаты экспериментальных исследований спектров излучения второй положительной си- стемы молекулярного азота из прианодной области отрицательной короны в воздухе в режиме импульсов Тричела. Проанализировано распределение интенсивности излучения в электронно-колебательно- вращательных переходах С3Пu(0)-В3Пg(0) молекулярного азота. На основе анализа вращательной структуры спектральных линий, с учетом больцмановского распределения заселенности вращательных уровней, опре- делена вращательная температура молекул азота (~470 K) в прианодной области разряда. Проведен теорети- ческий расчет спектров излучения вращательных линий R-ветви вращательной структуры спектра. ВИМІРЮВАННЯ ОБЕРТАЛЬНОЇ ТЕМПЕРАТУРИ АЗОТУ В ПРИАНОДНІЙ ОБЛАСТІ НЕГАТИВНОЇ КОРОНИ В ПОВІТРІ В РЕЖИМІ ІМПУЛЬСІВ ТРИЧЕЛА О.В. Болотов, В.І. Голота, Ю.В. Сiтнікова Наведено результати експериментальних досліджень спектрів випромінювання другої позитивної систе- ми молекулярного азоту з прианодної області негативної корони в повітрі в режимі імпульсів Тричела. Про- аналізовано розподіл інтенсивності випромінювання в електронно-коливально-обертальних переходах С3Пu(0)-В3Пg(0) молекулярного азоту. На основі аналізу обертальної структури спектральних ліній, з ураху- ванням больцманівського розподілу заселеності обертальних рівнів, визначена обертальна температура мо- лекул азоту (~470 K) у прианодній області розряду. Проведено теоретичний розрахунок спектрів випромі- нювання обертальних ліній R-гілки обертальної структури спектра. 1. experimental Setup 2. experimental results conclusionS