Іgnition of the beam-plasma discharge in the initially neitral gas

Initial stage of the beam-plasma discharge was studied via computer simulation for 2D electrostatic model. Stripped non-relativistic electron beam was injected into initially non-ionized helium. At the first stage transversal expansion of the beam was observed caused by its space charge. At the sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Dadyka, D.I., Anisimov, I.O.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147360
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Іgnition of the beam-plasma discharge in the initially neitral gas / D.I. Dadyka, I.O. Anisimov // Вопросы атомной науки и техники. — 2018. — № 4. — С. 204-207. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147360
record_format dspace
spelling irk-123456789-1473602019-02-15T01:23:42Z Іgnition of the beam-plasma discharge in the initially neitral gas Dadyka, D.I. Anisimov, I.O. Плазменно-пучковый разряд, газовый разряд и плазмохимия Initial stage of the beam-plasma discharge was studied via computer simulation for 2D electrostatic model. Stripped non-relativistic electron beam was injected into initially non-ionized helium. At the first stage transversal expansion of the beam was observed caused by its space charge. At the same time helium ionization via electron impact took place. Later beam focusing has been developed due to the space charge of the ions. Development of the beam-plasma instability as well as the background plasma heating was observed at the last stage of the simulation. За допомогою комп'ютерного моделювання для двовимірної електростатичної моделі досліджена початкова стадія плазмово-пучкового розряду. Стрічкоподібний електронний пучок інжектувався в первісно нейтральний гелій. На першому етапі спостерігалося поперечне розбухання пучка, зумовлене його об'ємним зарядом. В той же час відбувалася іонізація гелію електронним ударом. Потім спостерігалося фокусування пучка завдяки об'ємному заряду іонів. На останній стадії моделювання розвивалася плазмово-пучкова нестійкість і відбувався розігрів фонової плазми. С помощью компьютерного моделирования для двухмерной электростатической модели исследована начальная стадия плазменно-пучкового разряда. Ленточный электронный пучок инжектировался в первоначально нейтральный гелий. На первом этапе наблюдалось поперечное разбухание пучка, обусловленное его объемным зарядом. В то же время происходила ионизация гелия электронным ударом. Затем наблюдалась фокусировка пучка благодаря объемному заряду ионов. На последней стадии моделирования развивалась плазменно-пучковая неустойчивость и происходил разогрев фоновой плазмы. 2018 Article Іgnition of the beam-plasma discharge in the initially neitral gas / D.I. Dadyka, I.O. Anisimov // Вопросы атомной науки и техники. — 2018. — № 4. — С. 204-207. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.35 Fp, 52.40 Mj, 52.65 Rr, 52.80 Tn http://dspace.nbuv.gov.ua/handle/123456789/147360 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Dadyka, D.I.
Anisimov, I.O.
Іgnition of the beam-plasma discharge in the initially neitral gas
Вопросы атомной науки и техники
description Initial stage of the beam-plasma discharge was studied via computer simulation for 2D electrostatic model. Stripped non-relativistic electron beam was injected into initially non-ionized helium. At the first stage transversal expansion of the beam was observed caused by its space charge. At the same time helium ionization via electron impact took place. Later beam focusing has been developed due to the space charge of the ions. Development of the beam-plasma instability as well as the background plasma heating was observed at the last stage of the simulation.
format Article
author Dadyka, D.I.
Anisimov, I.O.
author_facet Dadyka, D.I.
Anisimov, I.O.
author_sort Dadyka, D.I.
title Іgnition of the beam-plasma discharge in the initially neitral gas
title_short Іgnition of the beam-plasma discharge in the initially neitral gas
title_full Іgnition of the beam-plasma discharge in the initially neitral gas
title_fullStr Іgnition of the beam-plasma discharge in the initially neitral gas
title_full_unstemmed Іgnition of the beam-plasma discharge in the initially neitral gas
title_sort іgnition of the beam-plasma discharge in the initially neitral gas
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url http://dspace.nbuv.gov.ua/handle/123456789/147360
citation_txt Іgnition of the beam-plasma discharge in the initially neitral gas / D.I. Dadyka, I.O. Anisimov // Вопросы атомной науки и техники. — 2018. — № 4. — С. 204-207. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT dadykadi ígnitionofthebeamplasmadischargeintheinitiallyneitralgas
AT anisimovio ígnitionofthebeamplasmadischargeintheinitiallyneitralgas
first_indexed 2025-07-11T02:17:29Z
last_indexed 2025-07-11T02:17:29Z
_version_ 1837315405584007168
fulltext ISSN 1562-6016. ВАНТ. 2018. №4(116) 204 IGNITION OF THE BEAM-PLASMA DISCHARGE IN THE INITIALLY NEITRAL GAS D.I. Dadyka, I.O. Anisimov Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics and Computer Systems, Kyiv, Ukraine E-mail: d.dadyka@gmail.com Initial stage of the beam-plasma discharge was studied via computer simulation for 2D electrostatic model. Stripped non-relativistic electron beam was injected into initially non-ionized helium. At the first stage transversal expansion of the beam was observed caused by its space charge. At the same time helium ionization via electron impact took place. Later beam focusing has been developed due to the space charge of the ions. Development of the beam-plasma instability as well as the background plasma heating was observed at the last stage of the simulation. PACS: 52.35 Fp, 52.40 Mj, 52.65 Rr, 52.80 Tn INTRODUCTION Study of the beam-plasma discharge (BPD) is inter- esting for construction of the powerful sources of dense plasma, interpretation of results of an active experi- ments in the ionosphere plasma, etc. Mechanism of the BPD development is based on the beam-plasma instability (BPI). BPI moves to the for- mation of a high-frequency electromagnetic field that accelerates electrons of the background plasma. Forced oscillations of these electrons are destructed due to the collisions with heavy particles (i.e. neutral atoms and ions). Collisions lead to the heating of the electron gas. Finally the heated electrons result to the intense ioniza- tion of the neutral component, i.e. BPD ignition [1]. The leading role of BPI in the background plasma heating was demonstrated in our previous modelling [2]. However, initially ionized medium with a relatively high ionization level was considered, that corresponds to the late stages of the BPD development. In this paper, we attempted to investigate the development of BPD in an initially non-ionized gas via computer simulation using PIC method [3]. 1. COMPUTER SIMULATION OF THE BPD Analytic study of BPD in the real geometry is ex- tremely complex, so computer simulation is often used, including the large particles in cell methods [3]. All the results outlined below are obtained by the original PLS package [4]. Electrostatic non-relativistic model was used. Elementary interactions (elastic collisions between electrons and neutral molecules, excitation and ioniza- tion of neutral molecules and dissociative recombina- tion) were described using Monte Carlo method. The coefficient of dissociative recombination for helium was βd=2.3 cm3/s. The neutral gas was considered to be ho- mogeneous and its density was constant in time. 2. PROPAGATION OF ELECTRON BEAM IN THE VACUUM First the motion of electron beam in a vacuum was studied. It is well known that such motion is accompa- nied by the formation of the space charge. Virtual cath- ode appears for the beam current exceeding some criti- cal value. It leads to the reflection of a part of the elec- trons back to the injector and to the limitation of the output current [5, 6]. Let us evaluate the critical current for a two- dimensional model of motion of the stripped beam in a rectangular volume bounded by conducting grounded planes (Fig. 1). Beam moves along x-axis, y=0 is the plane of symmetry. Fig 1. Geometry of the considered model Infinite longitudinal magnetic field is considered to suppress the transversal motion of electrons. Consider the electron beam as a uniform plane layer of charge density ρ and width a. Then the potential dis- tribution along plane y=0 can be found from the follow- ing equations and boundary conditions: (1) Taking into account that , where is the beam current density, and is the beam electrons` velocity, from (1) one can obtain: . (2) Then equality of the initial kinetic energy of the electrons and the maximal potential ener- gy max and expressing the velocity via the accelerating voltage move to the formula for the critical current density: . (3) Inhomogeneous spatial distribution of electrons should be taken into account for more accurate consid- eration. mailto:d.dadyka@gmail.com ISSN 1562-6016. ВАНТ. 2018. №4(116) 205 For the model shown in Fig. 1, simulation was per- formed, and the critical current was estimated. Fig. 2 shows the distributions of potential (a) and beam elec- trons density (2). The critical current obtained from the simulation was twice lower then analytical estimation. It can be explained by a doubling of the initial beam elec- trons` density in the centre of the beam (x=L/2). While the beam current significantly exceeds the critical value, the virtual cathode is formed near the injector. Reflec- tion of the significant part of the electrons back to injec- tor takes place. Reflection of electrons occurs from the vicinity of the middle beam plane, where the maximum of the potential is placed. So the cavity is formed in the beam (see Fig. 2,c). In the absence of the longitudinal magnetic field the beam expansion due to electrostatic forces and its re- flection from the space charge area take place (Fig. 3). a b c Fig. 2. Potential (a) and density (b) distributions along x direction at the middle plane of the beam for beam current close to critical value (U = 5 kV, J = 300 A/m2, a = 2 cm) and beam electrons' spatial distribution (c) for current that is significantly larger than critical value (Ua = 1 kV, J = 1 kA/m2, a = 2 cm, L=H=5 cm) a b c Fig. 3. Spatial distributions of the beam electrons’ density for the initial current density 102A/m2 (a), 3·102A/m2 (b) and 103 A/m2 (с). Beam width a=2 cm, Ua =5 kV 3. PROPAGATION OF ELECTRON BEAM IN THE GAS The beam dynamics in the gas was studied by simu- lation for system with parameters listed in Table. The simulation results are shown on Figs. 4, 5. Simulation parameters Gas pressure р = 0.1 Torr Gas temperature T = 0.025 eV Beam width d = 1 cm Camera length L = 25 cm Camera height H = 25 cm Beam acceleration voltage U = 5 kV Beam current density J = 103 A/m2 Electron beam motion in a gas is accompanied by the scattering of electrons due to the elastic collisions and gas ionization. The electrons appeared due to the ionization are accelerated (mainly in the transverse direction) by the space charge field. Its potential is of the order of the ac- celerating voltage for the overcritical beam current. Beam electrons collide with neutral atoms resulting to the formation of plasma with very high electrons tem- perature (up to 1 keV) in the camera (see Fig. 5,g). Over time, ions appeared due to the electron impact ionization compensate the spatial charge of the beam. It leads to beam focusing (see Fig. 4). At this moment, the effective energy transfer from the beam to the plasma electrons ceases and plasma electron temperature gradu- ally decreases Fig. 4,b,e,g. At this stage, it is often pos- sible to observe transverse waves along the beam that violate the transverse symmetry of the system. The field of such waves is not very ample and practically doesn't heat up the background plasma. At a later stage of the discharge, the density of plas- ma formed by ionization becomes sufficient for the de- velopment of an BPI. For the development of BPI period of plasma oscil- lations must be substantially less than transit time of the beam electrons and the average time between electron- neutrals collisions). The development of BPI forms an effective mechanism for energy transfer from the beam to the background plasma. Consequently, the tempera- ture of the electrons grows again (see Fig. 5,i). This effect gives rise to the increase of the ionization velocity (vicinity of the point A, Fig. 6). Note that temporal evolution of the electron beam behaviour in the initially neutral gas described above qualitatively agrees with the results of the laboratory experiment [8]. ISSN 1562-6016. ВАНТ. 2018. №4(116) 206 a b c d e f Fig. 4. Spatial distributions of the beam electrons’ density (a, b, c) and ions’ density (d, e, f) for time points t=7·10-10s (a, d), t=1.4·10-8 s (b, e) та t=2.8·10-8 s (c, f) a b c d e f g h i Fig. 5. Spatial distributions of electric potential (a, b, c), beam electrons` density (d, e, f) and electron temperature of the background plasma (g, h, i) for time points t=2.56·10-8 s (a, d, g), t=7.85·10-8 s (b, e, h) and t=2.67·10-7 s (a, d, g) ISSN 1562-6016. ВАНТ. 2018. №4(116) 207 Fig. 6. Time course of the average ion density Over time, the BPI development area shifts further from the injector to the right wall of the camera, which leads to the BPI suppression. The reason for this phe- nomenon is likely to be the significant plasma density gradient along the beam due to ionisation inhomogeneity. It looks as if the BPD development can be accompanied by quasiperiodic excitation and suppression of BPI. CONCLUSIONS Critical current for the beam motion in vacuum ob- tained from the simulation is in a good agreement with analytic estimation. It confirms the correctness of PLS operation. The initial stage of the electron beam motion in a gas is accompanied by ionization of gas and beam fo- cusing due to compensation of beam space charge by ions fild. The virtual cathode disappears and beam cur- rent that can flow in the system is much larger than the critical current in vacuum. The ionization of the neutral gas by an electron beam leads to the gradual accumulation of plasma, that starts to interact with the beam through the BPI devel- opment. In addition to the transverse beam density oscilla- tions inherent to BPI longitudinal oscillations of the beam are observed. They violate the system symmetry with respect to the central plane. The BPI development substantially enhances the transfer of energy from electron beam to plasma. Elastic electron-neutral collisions lead to significant back- ground plasma heating and an increase of the velocity of the gas ionization. At this stage, impact ionization by an electron beam practically does not affect the overall plasma density dynamics. Significant gradient of the plasma density along the beam affects the BPI development and can suppress the BPI. REFERENCES 1. E.V. Mishin, Yu.Ya. Ruzhin, V.A. Telegin. Interac- tion of Electron Fluxes with Ionospheric Plasma. M.: “Edition of Hydromereorology”, 1989. 2. D.I. Dadyka, I.O. Anisimov. 2d simulation of the initial stage of the beam-plasma discharge // Prob- lems of Atomic Science and Technology. Series “Plasma Physics”. 2015, № 1, p. 149-151. 3. C.K. Birdsall, A.B. Langdon. Plasma Physics via Computer Simulation / McGraw-Hill book company. 1985. 5. D.I. D. 4. D.I. Dadyka, I.O. Anisimov. PLS: A new parallel gpu accelerated package for plasma simulations // Proc. Intern. Seminar Actual problems of plasma physics, Kharkov, Jan. 16, 2018. 5. R. Miller. Introduction to physics of high-current beams of charged particles. M.: “Mir”, 1984. 6. A.G. Lymar, L.A. Bondarenco, A.M. Yegorov. Nu- merical investigation of the possibility of ions accel- eration by virtual cathode // Problems of Atomic Sci- ence and Technology. Series “Nuclear Physics In- vestigations”. 2012, № 3, p. 155-158. 7. V.A. Tutyk. Study of the beam-plasma discharge mode during the operation of electron gun using the gas discharge // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acceleration”. 2008, № 4, p. 184-188. 8. V.P. Popovich, I.F Kharchenko, E.G. Shustin. Beam-plasma discharge without magnetic field // Radiotechnics and Electronics. 1973, v. 18, № 3, p. 649-651. Article received 02.07.2018 ЗАЖИГАНИЕ ПЛАЗМЕННО-ПУЧКОВОГО РАЗРЯДА В ИЗНАЧАЛЬНО НЕИОНИЗИРОВАННОМ ГАЗЕ Д.И. Дадыка, И.А. Анисимов С помощью компьютерного моделирования для двухмерной электростатической модели исследована начальная стадия плазменно-пучкового разряда. Ленточный электронный пучок инжектировался в первона- чально нейтральный гелий. На первом этапе наблюдалось поперечное разбухание пучка, обусловленное его объемным зарядом. В то же время происходила ионизация гелия электронным ударом. Затем наблюдалась фокусировка пучка благодаря объемному заряду ионов. На последней стадии моделирования развивалась плазменно-пучковая неустойчивость и происходил разогрев фоновой плазмы. ЗАПАЛЮВАННЯ ПЛАЗМОВО-ПУЧКОВОГО РОЗРЯДУ В ПОЧАТКОВО НЕІОНІЗОВАНОМУ ГАЗІ Д.І. Дадика, І.О. Анісімов За допомогою комп'ютерного моделювання для двовимірної електростатичної моделі досліджена почат- кова стадія плазмово-пучкового розряду. Стрічкоподібний електронний пучок інжектувався в первісно ней- тральний гелій. На першому етапі спостерігалося поперечне розбухання пучка, зумовлене його об'ємним зарядом. В той же час відбувалася іонізація гелію електронним ударом. Потім спостерігалося фокусування пучка завдяки об'ємному заряду іонів. На останній стадії моделювання розвивалася плазмово-пучкова не- стійкість і відбувався розігрів фонової плазми.