Skew Divided Difference Operators and Schubert Polynomials
We study an action of the skew divided difference operators on the Schubert polynomials and give an explicit formula for structural constants for the Schubert polynomials in terms of certain weighted paths in the Bruhat order on the symmetric group. We also prove that, under certain assumptions, the...
Gespeichert in:
Datum: | 2007 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2007
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147361 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Skew Divided Difference Operators and Schubert Polynomials / A.N. Kirillov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | We study an action of the skew divided difference operators on the Schubert polynomials and give an explicit formula for structural constants for the Schubert polynomials in terms of certain weighted paths in the Bruhat order on the symmetric group. We also prove that, under certain assumptions, the skew divided difference operators transform the Schubert polynomials into polynomials with positive integer coefficients. |
---|