Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility
We show that under certain technical assumptions any weakly nonlocal Hamiltonian structure compatible with a given nondegenerate weakly nonlocal symplectic structure J can be written as the Lie derivative of J −1 along a suitably chosen nonlocal vector field. Moreover, we present a new description f...
Gespeichert in:
Datum: | 2007 |
---|---|
1. Verfasser: | Sergyeyev, A. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2007
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147362 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility / A. Sergyeyev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 32 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On the Lie algebra structures connected with Hamiltonian dynamical systems
von: Smirnov, R.G.
Veröffentlicht: (1997) -
Deformations of compatible Hom-mock-Lie algebras
von: Benali, Karima, et al.
Veröffentlicht: (2025) -
On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems
von: Santoprete, M.
Veröffentlicht: (2015) -
Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields
von: Ferreiro Pérez, R., et al.
Veröffentlicht: (2009) -
The Reduction Method in the Theory of Lie-Algebraically Integrable Oscillatory Hamiltonian Systems
von: Prykarpatsky, A.K., et al.
Veröffentlicht: (2003)