Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice

We present two new families of stationary solutions for equations of Bose-Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k → 0) our solutions model a qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Kostov, N.A., Gerdjikov, V.S., Valchev, T.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147363
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice / N.A. Kostov, V.S. Gerdjikov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147363
record_format dspace
spelling irk-123456789-1473632019-02-15T01:23:00Z Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice Kostov, N.A. Gerdjikov, V.S. Valchev, T.I. We present two new families of stationary solutions for equations of Bose-Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k → 0) our solutions model a quasi-one dimensional quantum degenerate Bose-Fermi mixture trapped in optical lattice. In the limit k → 1 the solutions are expressed by hyperbolic function solutions (vector solitons). Thus we are able to obtain in an unified way quasi-periodic and periodic waves, and solitons. The precise conditions for existence of every class of solutions are derived. There are indications that such waves and localized objects may be observed in experiments with cold quantum degenerate gases. 2007 Article Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice / N.A. Kostov, V.S. Gerdjikov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K20; 35Q51; 74J30; 78A60 http://dspace.nbuv.gov.ua/handle/123456789/147363 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present two new families of stationary solutions for equations of Bose-Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k → 0) our solutions model a quasi-one dimensional quantum degenerate Bose-Fermi mixture trapped in optical lattice. In the limit k → 1 the solutions are expressed by hyperbolic function solutions (vector solitons). Thus we are able to obtain in an unified way quasi-periodic and periodic waves, and solitons. The precise conditions for existence of every class of solutions are derived. There are indications that such waves and localized objects may be observed in experiments with cold quantum degenerate gases.
format Article
author Kostov, N.A.
Gerdjikov, V.S.
Valchev, T.I.
spellingShingle Kostov, N.A.
Gerdjikov, V.S.
Valchev, T.I.
Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kostov, N.A.
Gerdjikov, V.S.
Valchev, T.I.
author_sort Kostov, N.A.
title Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
title_short Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
title_full Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
title_fullStr Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
title_full_unstemmed Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice
title_sort exact solutions for equations of bose-fermi mixtures in one-dimensional optical lattice
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147363
citation_txt Exact Solutions for Equations of Bose-Fermi Mixtures in One-Dimensional Optical Lattice / N.A. Kostov, V.S. Gerdjikov, T.I. Valchev // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kostovna exactsolutionsforequationsofbosefermimixturesinonedimensionalopticallattice
AT gerdjikovvs exactsolutionsforequationsofbosefermimixturesinonedimensionalopticallattice
AT valchevti exactsolutionsforequationsofbosefermimixturesinonedimensionalopticallattice
first_indexed 2025-07-11T01:55:04Z
last_indexed 2025-07-11T01:55:04Z
_version_ 1837313752156864512
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 3 (2007), 071, 14 pages Exact Solutions for Equations of Bose–Fermi Mixtures in One-Dimensional Optical Lattice Nikolay A. KOSTOV †, Vladimir S. GERDJIKOV ‡ and Tihomir I. VALCHEV ‡ † Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko chaussee, 1784 Sofia, Bulgaria E-mail: nakostov@inrne.bas.bg ‡ Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko chaussee, 1784 Sofia, Bulgaria E-mail: gerjikov@inrne.bas.bg, valtchev@inrne.bas.bg Received March 30, 2007, in final form May 17, 2007; Published online May 30, 2007 Original article is available at http://www.emis.de/journals/SIGMA/2007/071/ Abstract. We present two new families of stationary solutions for equations of Bose–Fermi mixtures with an elliptic function potential with modulus k. We also discuss particular cases when the quasiperiodic solutions become periodic ones. In the limit of a sinusoidal potential (k → 0) our solutions model a quasi-one dimensional quantum degenerate Bose– Fermi mixture trapped in optical lattice. In the limit k → 1 the solutions are expressed by hyperbolic function solutions (vector solitons). Thus we are able to obtain in an unified way quasi-periodic and periodic waves, and solitons. The precise conditions for existence of every class of solutions are derived. There are indications that such waves and localized objects may be observed in experiments with cold quantum degenerate gases. Key words: Bose–Fermi mixtures; one dimensional optical lattice 2000 Mathematics Subject Classification: 37K20; 35Q51; 74J30; 78A60 1 Introduction Over the last decade, the field of cold degenerate gases has been one of the most active areas in physics. The discovery of Bose–Einstein Condensates (BEC) in 1995 (see e.g. [1, 2]) greatly stimulated research of ultracold dilute Boson-Fermion mixtures. This interest is driven by the desire to understand strongly interacting and strongly correlated systems, with applications in solid-state physics, nuclear physics, astrophysics, quantum computing, and nanotechnologies. An important property of Bose–Fermi mixtures wherein the fermion component is dominant is that the mixture tends to exhibit essentially three-dimensional character even in a strongly elongated trap. During the last decade, great progress has been achieved in the experimental realization of Bose–Fermi mixtures [3, 4], in particular Bose–Fermi mixtures in one-dimensional lattices. Optical lattices provide a powerful tool to manipulate matter waves, in particular solitons. The Pauli exclusion principle results in the extension of the fermion cloud in the transverse direction over distances comparable to the longitudinal dimension of the excitations. It has been shown recently, however, that the quasi-one-dimensional situation can nevertheless be realized in a Bose–Fermi mixture due to strong localization of the bosonic component [5, 6]. With account of the effectiveness of the optical lattice in managing systems of cold atoms, their effect on the dynamics of Bose–Fermi mixtures is of obvious interest. Some of the aspects of this problem have already been explored within the framework of the mean-field approximation. In particular, the dynamics of the Bose–Fermi mixtures were explored from the point of view of designing quantum dots [8]. The localized states of Bose–Fermi mixtures with attractive (repulsive) Bose–Fermi interactions are viewed as a matter-wave realization of quantum dots mailto:nakostov@inrne.bas.bg mailto:gerjikov@inrne.bas.bg mailto:valtchev@inrne.bas.bg http://www.emis.de/journals/SIGMA/2007/071/ 2 N.A. Kostov, V.S. Gerdjikov and T.I. Valchev and antidots. The case of Bose–Fermi mixtures in optical lattices is investigated in detail and the existence of gap solitons is shown. In particular, in [8] it is obtained that the gap solitons can trap a number of fermionic bound-state levels inside both for repulsive and attractive boson-boson interactions. The time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic bright solitons in a trapped degenerate Fermi gas mixed with a Bose–Einstein condensate in a quasi-one-dimensional cigar-shaped geometry is proposed in [9]. Similar model is used to study mixing-demixing in a degenerate fermion-fermion mixture in [10]. Modulational instability, solitons and periodic waves in a model of quantum degenerate boson- fermion mixtures are obtained in [11]. Our aim is to derive two new classes of quasi-periodic exact solutions of the time dependent mean field equations of Bose–Fermi mixture in one-dimensional lattice. We also study some limiting cases of these solutions. The paper is organized as follows. In Section 2 we give the basic equations. Section 3 is devoted to derivation of the first class quasi-periodic solutions with non-trivial phases. A system of Nf + 1 equations, which reduce quasi-periodic solutions to periodic are derived. In Section 4 we present second class (type B) nontrivial phase solutions. In Section 5 we obtain 14 classes of elliptic solutions. Section 6 is devoted to two special limits, to hyperbolic and trigonometric functions. In Section 7 preliminary results about the linear stability of solutions are given. Section 8 summarizes the main conclusions of the paper. 2 Basic equations At mean field approximation we consider the following Nf + 1 coupled equations [7, 8, 12, 11] i~ ∂Ψb ∂t + 1 2mB ∂2Ψb ∂x2 − VΨb − gBB|Ψb|2Ψb − gBFρfΨb = 0, (2.1) i~ ∂Ψf j ∂t + 1 2mF ∂2Ψf j ∂x2 − VΨf j − gBF|Ψb|2Ψf j = 0, (2.2) where ρf = Nf∑ i=1 |Ψf i |2 and gBB = 2aBB as , gBF = 2aBF asα , α = mB mF , as = √ ~ mBω⊥ , aBB and aBF are the scattering lengths for s-wave collisions for boson-boson and boson-fermion interactions, respectively. In recent experiments [13, 14] the quantum degenerate mixtures of 40K and 87Rb are studied where mB = 87mp , mB = 40mp and ω⊥ = 215 Hz. Equations (2.1), (2.2) have been studied numerically in [7]. The formation of localized structures containing bosons and fermions has been reported in the particular case in which the interspecies scattering length aBF is negative, which is the case of the 40K-87Rb mixture. An appropriate class of periodic potentials to model the quasi-1D confinement produced by a standing light wave is given by [15] V = V0sn 2(αx, k), where sn (αx, k) denotes the Jacobian elliptic sine function with elliptic modulus 0 ≤ k ≤ 1. Experimental realization of two-component Bose–Einstein condensates have stimulated con- siderable attention in general [16] and in particular in the quasi-1D regime [17, 18] when the Gross–Pitaevskii equations for two interacting Bose–Einstein condensates reduce to coupled nonlinear Schrödinger (CNLS) equations with an external potential. In specific cases the two component CNLS equations can be reduced to the Manakov system [19] with an external po- tential. Exact Solutions for Equations of Bose–Fermi Mixtures 3 Important role in analyzing these effects was played by the elliptic and periodic solutions of the above-mentioned equations. Such solutions for the one-component nonlinear Schrödinger equation are well known, see [20] and the numerous references therein. Elliptic solutions for the CNLS and Manakov system were derived in [21, 22, 23]. In the presence of external elliptic potential explicit stationary solutions for NLS were derived in [15, 24, 25]. These results were generalized to the n-component CNLS in [18]. For 2-component CNLS explicit stationary solutions are derived in [26]. 3 Stationary solutions with non-trivial phases We restrict our attention to stationary solutions of these CNLS Ψb(x, t) = q0(x) exp ( −iω0 ~ t+ iΘ0(x) + iκ0 ) , (3.1) Ψf j (x, t) = qj(x) exp ( −iωj ~ t+ iΘj(x) + iκ0,j ) , (3.2) where j = 1, . . . , Nf , κ0, κ0,j , are constant phases, qj and Θ0, Θj(x) are real-valued functions connected by the relation Θ0(x) = C0 ∫ x 0 dx′ q20(x′) , Θj(x) = Cj ∫ x 0 dx′ q2j (x′) , (3.3) C0,Cj , j = 1, . . . , Nf being constants of integration. Substituting the ansatz (3.1), (3.2) in equations (2.1) and separating the real and imaginary part we get 1 2mB q30q0xx − gBBq 6 0 − V q40 − gBF  Nf∑ i=1 q2i  q40 + ω0q 4 0 = 1 2mB C2 0, (3.4) 1 2mF q3j qjxx − gBFq 2 0q 4 j − V q4j + ωjq 4 j = 1 2mF C2 j . We seek solutions for q20 and q2j , j = 1, . . . , Nf as a quadratic function of sn (αx, k): q20 = A0sn 2(αx, k) +B0, q2j = Ajsn 2(αx, k) +Bj . (3.5) Inserting (3.5) in (3.4) and equating the coefficients of equal powers of sn (αx, k) results in the following relations among the solution parameters ωj , Cj , Aj and Bj and the characteristic of the optical lattice V0, α and k: A0 = α2k2 −mFV0 mFgBF , Nf∑ j=1 Aj = α2k2 gBF ( 1 mB − gBB mFgBF ) − V0 gBF ( 1− gBB gBF ) , (3.6) ω0 = α2(k2 + 1) 2mB + gBBB0 + gBF Nf∑ i=1 Bi + α2k2 2mB B0 A0 , ωj = α2(k2 + 1) 2mF + gBFB0 + α2k2 2mF Bj Aj , (3.7) C2 0 = α2B0 A0 (A0 +B0)(A0 +B0k 2), C2 j = α2Bj Aj (Aj +Bj)(Aj +Bjk 2), (3.8) where j = 1, . . . , Nf . Next for convenience we introduce B0 = −β0A0, Bj = −βjAj , j = 1, . . . , Nf , 4 N.A. Kostov, V.S. Gerdjikov and T.I. Valchev Table 1. W = gBFmFWB/(mBWF). 1 β0 ≤ 0 βj ≤ 0 A0 ≥ 0 Aj ≥ 0 gBF ≷ 0 gBB ≶ W V0 ≶ α2k2/mF 2 β0 ≤ 0 1 ≤ βj ≤ 1/k2 A0 ≥ 0 Aj ≤ 0 gBF ≷ 0 gBB ≷ W V0 ≶ α2k2/mF 3 1 ≤ β0 ≤ 1/k2 βj ≤ 0 A0 ≤ 0 Aj ≥ 0 gBF ≷ 0 gBB ≷ W V0 ≷ α2k2/mF 4 1 ≤ β0 ≤ 1/k2 1 ≤ βj ≤ 1/k2 A0 ≤ 0 Aj ≤ 0 gBF ≷ 0 gBB ≶ W V0 ≷ α2k2/mF then C2 0 = α2A2 0β0(β0 − 1)(1− β0k 2), C2 j = α2A2 jβj(βj − 1)(1− βjk 2), j = 1, . . . , Nf . In order for our results (3.5) to be consistent with the parametrization (3.1)–(3.3) we must ensure that both q0(x) and Θ0(x) are real-valued, and also qj(x) and Θj(x) are real-valued; this means that C2 0 ≥ 0 and q20(x) ≥ 0 and also C2 j ≥ 0 and q2j (x) ≥ 0 (see Table 1, WB = (α2k2 −mBV0), WF = (α2k2−mFV0)). An elementary analysis shows that with l = 0, . . . , Nf one of the following conditions must hold a) Al ≥ 0, βl ≤ 0, b) Al ≤ 0, 1 ≤ βl ≤ 1 k2 . Although our main interest is to analyze periodic solutions, note that the solutions Ψb, Ψf j in (2.1), (2.2) are not always periodic in x. Indeed, let us first calculate explicitly Θ0(x) and Θj(x) by using the well known formula, see e.g. [27]:∫ x 0 du ℘(αu)− ℘(αv) = 1 ℘′(αv) [ 2xζ(αv) + 1 α ln σ(αu− αv) σ(αu+ αv) ] , where ℘, ζ, σ are standard Weierstrass functions. In the case a) we replace v by iv0 and v by ivj , set sn 2(iαv0; k) = β0 < 0, sn 2(iαvj ; k) = βj < 0 and e1 = 1 3 (2− k2), e2 = 1 3 (2k2 − 1), e3 = −1 3 (1 + k2), and rewrite the l.h.s in terms of Jacobi elliptic functions:∫ x 0 du sn 2(iαv; k)sn 2(αu; k) sn 2(iαv; k)− sn 2(αu; k) = −β0x− β2 0 ∫ x 0 du sn 2(αu, k)− β0 , and for j = 1, . . . , Nf we have∫ x 0 du sn 2(iαv; k)sn 2(αu; k) sn 2(iαv; k)− sn 2(αu; k) = −βjx− β2 j ∫ x 0 du sn 2(αu, k)− βj . Skipping the details we find the explicit form of Θ0(x) = C0 ∫ x 0 du A0(sn 2(αu; k)− β0 = −τ0x+ i 2 ln σ(αx+ iαv0) σ(αx− iαv0) , τ0 = iαζ(iαv0) + α β0 √ −β0(1− β0)(1− k2β0). and for Θj(x), j = 1, . . . , Nf we have Θj(x) = Cj ∫ x 0 du Aj(sn 2(αu; k)− βj) = −τjx+ i 2 ln σ(αx+ iαvj) σ(αx− iαvj) , (3.9) Exact Solutions for Equations of Bose–Fermi Mixtures 5 τj = iαζ(iαvj) + α βj √ −βj(1− βj)(1− k2βj). These formulae provide an explicit expression for the solutions Ψb, Ψf j with nontrivial phases; note that for real values of v0 Θ0(x), vj Θj(x) are also real. Now we can find the conditions under which Qj(x, t) are periodic. Indeed, from (3.9) we can calculate the quantities T0, Tj satisfying: Θ0(x+ T0)−Θ0(x) = 2πp0, Θj(x+ Tj)−Θj(x) = 2πpj , j = 1, . . . , Nf . Then Ψb, Ψf j will be periodic in x with periods T0 = 2m0ω/α, Tj = 2mjω/α if there exist pairs of integers m0, p0, and mj , pj , such that: m0 p0 = −π [αv0ζ(ω) + ωτ0/α]−1 , mj pj = −π [αvjζ(ω) + ωτj/α]−1 , j = 1, . . . , Nf . where ω (and ω′) are the half-periods of the Weierstrass functions. 4 Type B nontrivial phase solutions For the first time solutions of this type were derived in [15, 24, 25] for the case of nonlin- ear Schrödinger equation and in [18] for the n-component CNLSE. For Bose–Fermi mixtures solutions of this type are possible • when we have two lattices VB and VF, • when mB = mF. We seek the solutions in one of the following forms: q20 = A0sn (αx, k) +B0, q2j = Ajsn (αx, k) +Bj , (4.1) q20 = A0cn (αx, k) +B0, q21 = Ajcn (αx, k) +Bj , (4.2) q20 = A0dn (αx, k) +B0, q21 = Ajdn (αx, k) +Bj , j = 1, . . . , Nf . (4.3) In the first case (4.1) we have VB = 3α2k2 8mB , VF = 3α2k2 8mF A0 = − α2k2 4mFgBF Bj Aj , B1 A1 = · · · = BNf ANF , ∑ j Aj = − α2k2 4mBgBF B0 A0 − A0gBB gBF , ω0 = α2(k2 + 1) 8mB + gBBB0 + gBFB1 − α2k2 8mB B2 0 A2 0 , ωj = α2(k2 + 1) 8mF + gBFB0 − α2k2 8mF B2 j A2 j , C2 0 = α2 4A2 0 (B2 0 −A2 0)(A 2 0 −B2 0k 2), C2 j = α2 4A2 j (B2 j −A2 j )(A 2 j −B2 j k 2). We remark that due to relations B1 A1 = · · · = BNf ANF we have that all qj of the fermion fields are proportional to q1. 6 N.A. Kostov, V.S. Gerdjikov and T.I. Valchev 5 Examples of elliptic solutions Using the general solution equations (3.6)–(3.8) we have the following special cases: (these solutions are possible only when we have some restrictions on gBB, gBF, and V0 see the Table 1) Example 1. Suppose that B0 = Bj = 0. Therefore we have q0(x) = √ A0sn (αx, k), qj = √ Ajsn (αx, k), (5.1) A0 = α2k2 −mFV0 mFgBF , ∑ j Aj = α2k2 gBF ( 1 mB − gBB mF gFB ) − V0 gBF ( 1− gBB gBF ) . (5.2) For the frequencies ω0 and ωj we have ω0 = α2(1 + k2) 2mB , ωj = α2(1 + k2) 2mF . as well as C0 = Cj = 0. Example 2. Let B0 = −A0 and Bj = −Aj hold true. Then we have q0(x) = √ −A0cn (αx, k), qj(x) = √ −Ajcn (αx, k). (5.3) The coefficients A0 and Aj have the same form as (5.2). The frequencies ω0 and ωj now look as follows ω0 = α2(1− 2k2) 2mB + V0, ωj = α2(1− 2k2) 2mF + V0. The constants C0 and Cj are equal to zero again. Example 3. B0 = −A0/k 2 and Bj = −Aj/k 2. In this case we obtain q0(x) = √ −A0 k dn (αx, k), qj(x) = √ −Aj k dn (αx, k), ω0 = α2(k2 − 2) 2mB + V0 k2 , ωj = α2(k2 − 2) 2mF + V0 k2 . (5.4) As before C0 = Cj = 0. Example 4. B0 = 0 and Bj = −Aj . The result reads q0(x) = √ A0sn (αx, k), qj(x) = √ −Ajcn (αx, k), ω0 = α2(1− k2) 2mB + V0 +A0gBB, ωj = α2 2mF . (5.5) By analogy with the previous examples the constants A0, Aj , C0 and Cj are given by formu- lae (5.2) and C0, Cj are all zero. Example 5. B0 = 0 and Bj = −Aj/k 2. Thus one gets q0(x) = √ A0sn (αx, k), qj(x) = √ −Aj k dn (αx, k), ω0 = α2(k2 − 1) 2mB + V0 k2 + A0gBB k2 , ωj = α2k2 2mF . (5.6) Exact Solutions for Equations of Bose–Fermi Mixtures 7 Table 2. Trivial phase solutions in the generic case. We use the quantity W = gBFmFWB/(mBWF). 1 q0 = √ A0sn (αx, k) gBF ≷ 0 gBB ≶ W V0 ≶ α2k2/mF qj = √ Ajsn (αx, k) 2 q0 = √ −A0cn (αx, k) gBF ≷ 0 gBB ≶ W V0 ≷ α2k2/mF qj = √ −Ajcn (αx, k) 3 q0 = √ −A0dn (αx, k)/k gBF ≷ 0 gBB ≶ W V0 ≷ α2k2/mF qj = √ −Ajdn (αx, k)/k 4 q0 = √ A0sn (αx, k) gBF ≷ 0 gBB ≷ W V0 ≶ α2k2/mF qj = √ −Ajcn (αx, k) 5 q0 = √ A0sn (αx, k) gBF ≷ 0 gBB ≷ W V0 ≶ α2k2/mF qj = √ −Ajdn (αx, k)/k 6 q0 = √ −A0cn (αx, k) gBF ≷ 0 gBB ≷ W V0 ≷ α2k2/mF qj = √ Ajsn (αx, k) 7 q0 = √ −A0cn (αx, k) gBF ≷ 0 gBB ≶ W V0 ≷ α2k2/mF qj = √ −Ajdn (αx, k)/k 8 q0 = √ −A0dn (αx, k)/k gBF ≷ 0 gBB ≷ W V0 ≷ α2k2/mF qj = √ Ajsn (αx, k) 9 q0 = √ −A0dn (αx, k)/k gBF ≷ 0 gBB ≶ W V0 ≷ α2k2/mF qj = √ −Ajcn (αx, k) Example 6. Let B0 = −A0 and Bj = 0. Hence we have q0(x) = √ −A0cn (αx, k), qj(x) = √ Ajsn (αx, k), ω0 = α2 2mB − gBBA0, ωj = α2(1− k2) 2mF + V0. Example 7. Let B0 = −A0 and Bj = −Aj/k 2. We obtain q0(x) = √ −A0cn (αx, k), qj(x) = √ −Aj k dn (αx, k), ω0 = V0 k2 − α2 2mB + 1− k2 k2 A0gBB, ωj = V0 − α2k2 2mF . Example 8. Suppose B0 = −A0/k 2 and Bj = 0. Then q0(x) = √ −A0 k dn (αx, k), qj(x) = √ Ajsn (αx, k), ω0 = α2k2 2mB − gBBA0 k2 , ωj = α2(k2 − 1) 2mF + V0 k2 . Example 9. Let B0 = −A0/k 2 and Bj = −Aj . Thus q0(x) = √ −A0 k dn (αx, k), qj(x) = √ −Ajcn (αx, k), ω0 = V0 − α2k2 2mB + k2 − 1 k2 gBBA0, ωj = V0 k2 − α2 2mF . All these cases when V0 = 0 and j = 2 are derived for the first time in [11]. 8 N.A. Kostov, V.S. Gerdjikov and T.I. Valchev 5.1 Mixed trivial phase solution Example 10. When B0 = 0, B1 = 0, B2 = −A2, Bj = −Aj/k 2, j = 3, . . . , Nf the solutions obtain the form q0 = √ A0sn (αx, k), q1 = √ A1sn (αx, k), q2 = √ −A2cn (αx, k), qj = √ −Ajdn (αx, k)/k, j = 3, . . . , Nf . Using equations (3.6)–(3.8) we have A0 = α2k2 − V0mF mF gBF , Nf∑ j=1 Aj = α2k2 ( 1 mBgBF − gBB mF g2 BF ) − V0 ( 1 gBF − gBB g2 BF ) , ω0 = α2(k2 − 1) 2mB + gBF k2 ( A1 + (1− k2)A2 ) + gBBA0 k2 + V0 k2 , ω1 = α2(1 + k2) 2mF , ω2 = 1 2mF α2, ωj = α2k2 2mF , j = 3, . . . , NF . Example 11. Let B0 = B1 = 0 and Bj = −Aj where j = 2, . . . , Nf . Therefore the solutions read q0(x) = √ A0sn (αx, k), q1(x) = √ A1sn (αx, k), qj(x) = √ −Ajcn (αx, k). Then we obtain for frequencies the following results ω0 = α2(1− k2) 2mB + V0 + gBBA0 + gBFA1, ω1 = α2(1 + k2) 2mF , ωj = α2 2mF . Example 12. Suppose B0 = −A0, B1 = 0, B2 = −A2 and Bj = −Aj/k 2 where j = 3, . . . , Nf . The solutions have the form q0(x) = √ −A0cn (αx, k), q1(x) = √ A1sn (αx, k), q2(x) = √ −A2cn (αx, k), qj(x) = √ −Ajdn (αx, k)/k. The frequencies are ω0 = V0 k2 − α2 2mB + 1− k2 k2 (gBBA0 + gBFA2) + gBF k2 A1, ω1 = V0 + α2(1− k2) 2mF , ω2 = V0 + α2(1− 2k2) 2mF , ωj = V0 − α2k2 2mF . Example 13. Let B0 = −A0, B1 = −A1 and Bj = −Aj/k 2 for j = 2, . . . , Nf . Then q0(x) = √ −A0cn (αx, k), q1(x) = √ −A1cn (αx, k), qj(x) = √ −Ajdn (αx, k)/k, ω0 = V0 k2 − α2 2mB + 1− k2 k2 (gBBA0 + gBFA1) , ω1 = V0 + α2(1− 2k2) 2mF , ωj = V0 − α2k2 2mF . Example 14. Let B0 = −A0/k 2, B1 = −A1 and Bj = −Aj/k 2 for j = 2, . . . , Nf . Hence q0(x) = √ −A0dn (αx, k)/k, q1(x) = √ −A1cn (αx, k), qj(x) = √ −Ajdn (αx, k)/k, ω0 = α2(k2 − 2) 2mB + V0 k2 + 1− k2 k2 (gBBA0 + gBFA1), ω1 = V0 k2 − α2 2mF , ωj = V0 k2 + α2(k2 − 2) 2mF . Certainly these examples do not exhaust all possible combinations of solutions and it is easy to extend this list. Exact Solutions for Equations of Bose–Fermi Mixtures 9 6 Vector soliton solutions 6.1 Vector bright-bright soliton solutions When k → 1, sn (αx, 1) = tanh(αx) and B0 = −A0, Bj = −Aj we obtain that the solutions read q0 = √ −A0 1 cosh(αx) , qj = √ −Aj 1 cosh(αx) , where A0 ≤ 0 as well as Aj ≤ 0. Using equations (3.6)–(3.8) we have A0 = α2 − V0mF mFgBF , V = V0 tanh2(αx), Nf∑ j=1 Aj = α2 gBF ( 1 mB − gBB mFgBF ) − V0 gBF ( 1− gBB gBF ) , ω0 = V0 − 1 2mB α2, ωj = V0 − 1 2mF α2. As a consequence of the restrictions on A0 and Aj one can get the following unequalities gBF > 0, V0 ≥ α2 mF , gBB ≤ (α2 −mBV0)mF (α2 −mFV0)mB gBF, gBF < 0, V0 ≤ α2 mF , gBB ≥ (α2 −mBV0)mF (α2 −mFV0)mB gBF. Vector bright soliton solution when V0 = 0 is derived for the first time in [11]. 6.2 Vector dark-dark soliton solutions When k → 1 and B0 = Bj = 0 are satisfied the solutions read q0(x) = √ A0 tanh(αx), qj(x) = √ Aj tanh(αx). The natural restrictions A0 ≥ 0 and Aj ≥ 0 lead to gBF > 0, gBB ≤ (α2 −mBV0)mF (α2 −mFV0)mB gBF, V0 ≤ α2/mF, gBF < 0, gBB ≥ (α2 −mBV0)mF (α2 −mFV0)mB gBF, V0 ≥ α2/mF, A0 = α2 −mFV0 mFgBF , ∑ j Aj = α2 gBF ( 1 mB − gBB mF gFB ) − V0 gBF ( 1− gBB gBF ) . (6.1) For the frequencies ω0 and ωj and the constants C0 and Cj we have ω0 = α2 mB , ωj = α2 mF , C0 = Cj = 0. (6.2) 10 N.A. Kostov, V.S. Gerdjikov and T.I. Valchev 6.3 Vector bright-dark soliton solutions When k → 1, B0 = −A0 and Bj = 0, we have q0(x) = √ −A0 cosh(αx) , qj(x) = √ Aj tanh(αx), ω0 = α2 2mB − gBBA0, ωj = V0, C0 = Cj = 0. The parameters A0 and Aj are given by (6.1). In this case we have the following restrictions gBF > 0, gBB ≥ (α2 −mBV0)mF (α2 −mFV0)mB gBF, V0 ≥ α2/mF, gBF < 0, gBB ≤ (α2 −mBV0)mF (α2 −mFV0)mB gBF, V0 ≤ α2/mF. 6.4 Vector dark-bright soliton solutions When k → 1 and provided that B0 = 0 and Bj = −Aj the result is q0(x) = √ A0 tanh(αx), qj(x) = √ −Aj cosh(αx) , ω0 = V0 +A0gBB, ωj = α2 2mF . By analogy with the previous examples the constants A0, Aj , C0 and Cj are given by formu- lae (6.1) and (6.2) respectively. The restrictions now are gBF > 0, gBB ≥ (α2 −mBV0)mF (α2 −mFV0)mB gBF, V0 ≤ α2/mF, gBF < 0, gBB ≤ (α2 −mBV0)mF (α2 −mFV0)mB gBF, V0 ≥ α2/mF. 6.5 Vector dark-dark-bright soliton solutions Let B0 = B1 = 0 and Bj = −Aj where j = 2, . . . , Nf . Therefore the solutions read q0(x) = √ A0 tanh(αx), q1(x) = √ A1 tanh(αx), qj(x) = √ −Aj sech(αx). Then we obtain for frequencies the following results ω0 = V0 + gBBA0 + gBFA1, ω1 = α2 mF , ωj = α2 2mF . These examples are by no means exhaustive. 6.6 Nontrivial phase, trigonometric limit In this section we consider a trap potential of the form Vtrap = V0 cos(2αx), as a model for an optical lattice. Our potential V is similar and differs only with additive constant. When k → 0, sn (αx, 0) = sin(αx) q20 = A0 sin2(αx) +B0, q2j = Aj sin2(αx) +Bj , (6.3) V = V0 sin2(αx) = 1 2 (V0 − V0 cos(2αx)), (6.4) Exact Solutions for Equations of Bose–Fermi Mixtures 11 Table 3. W = gBFmFWB/(mBWF). 1 β0 ≤ 0 βj ≤ 0 A0 ≥ 0 Aj ≥ 0 gBF ≷ 0 gBB ≶ gBF V0 ≶ 0 2 β0 ≤ 0 βj ≥ 1 A0 ≥ 0 Aj ≤ 0 gBF ≷ 0 gBB ≷ gBF V0 ≶ 0 3 β0 ≥ 1 βj ≤ 0 A0 ≤ 0 Aj ≥ 0 gBF ≷ 0 gBB ≷ gBF V0 ≷ 0 4 β0 ≥ 1 βj ≥ 1 A0 ≤ 0 Aj ≤ 0 gBF ≷ 0 gBB ≶ gBF V0 ≷ 0 Using equations (3.6)–(3.8) again we obtain the following result when (see Table 3) A0 = − V0 gBF , Nf∑ j=1 Aj = − V0 gBF ( 1− gBB gBF ) , ω0 = 1 2mB α2 +B0gBB + gBF Nf∑ i=1 Bi, ωj = 1 2mF α2 + gBFB0, C2 0 = α2B0(A0 +B0), C2 j = α2Bj(Aj +Bj), where Θ0(x) = arctan (√ A0 +B0 B0 tan(αx) ) , Θj(x) = arctan (√ Aj +Bj Bj tan(αx) ) . This solution is the most important from the physical point of view [8]. 7 Linear stability, preliminary results To analyze linear stability of our initial system of equations we seek solutions in the form ψ0(x, t) = (q0(x) + εφ0(x, t)) exp ( − iω0 ~ t+ iΘ0(x) + iκ0 ) , ψj(x, t) = (q1(x) + εφj(x, t)) exp ( − iωj ~ t+ iΘ1(x) + iκ1 ) . and obtain the following linearized equations ~  Φ0 Φ1 ... ΦNf  ,t =  Λ0 U1 U2 . . . UNf V1 Λ1 0 . . . 0 V2 0 Λ2 . . . 0 ... ... ... . . . ... VNf 0 0 . . . ΛNf   Φ0 Φ1 ... ΦNf  , Φ0 = ( φR 0 φI 0, ) , Φj = ( φR j φI j ) , where Λ0 = ( S0 L0,− L0,+ S0 ) , Uj = ( 0 0 U0,j 0 ) , Λj = ( Sj Lj,− Lj,+ Sj ) , Vj = ( 0 0 U1,j 0 ) , S0 = − C0 mBq0 ∂x ( 1 q0 ) , L0,− = − 1 2mB ( ∂2 xx − C2 0 q40 ) + V + gBBq 2 0 + gBFq 2 1 − ω0, U0,j = −2gBFq 2 0, L0,+ = 1 2mB ( ∂2 xx − C2 0 q40 ) − V − 3gBBq 2 0 − gBFq 2 1 + ω0, Sj = − Cj mFqj ∂x ( 1 qj ) , Lj,− = − 1 2mF ( ∂2 xx − C2 j q40 ) + V + gBFq 2 0 − ωj , 12 N.A. Kostov, V.S. Gerdjikov and T.I. Valchev U1,j = −2gBFq0qj , Lj,+ = 1 2mF ( ∂2 xx − C2 j q40 ) − V − gBFq 2 0 + ωj , j = 1, . . . , Nf . The analysis of the latter matrix system is a difficult problem and only numerical simulations are possible. Recently a great progress was achieved for analysis of linear stability of periodic solutions of type (3.1), (3.2) (see e.g. [15, 24, 25, 18, 26] and references therein). Nevertheless the stability analysis is known only for solutions of type (5.1)–(5.6) and solutions with nontrivial phase of type (6.3) and (6.4). Linear analysis of soliton solutions is well developed, but it is out scope of the present paper. Finally we discuss three special cases: Case I. Let B0 = Bj = 0 then for j = 1, . . . , Nf and q0 = √ A0sn (αx, k), qj = √ Ajsn (αx, k) we have the following linearized equations: ~φR 0,t = − 1 2mB ∂2 xxφ I 0 + V0 + gBBA0 + gBF ∑ j Aj  sn 2(αx, k)φI 0 − ω0φ I 0, ~φI 0,t = 1 2mB ∂2 xxφ R 0 − V0 + 3gBBA0 + gBF ∑ j Aj  sn 2(αx, k)φR 0 + ω0φ R 0 − 2gBFA0sn 2(αx, k) ∑ j φR j , ~φR j,t = − 1 2mF ∂2 xxφ I j + (V0 + gBFA0) sn 2(αx, k)φI j − ωjφ I j , ~φI j,t = 1 2mF ∂2 xxφ R j − (V0 + gBFA0) sn 2(αx, k)φR j + ωjφ R − 2gBF √ A0Ajsn 2(αx, k)φR 0 . Case II. Let B0 = −A0, Bj = −Aj then for q0 = √ −A0cn (αx, k), qj = √ −Ajcn (αx, k) we obtain the following linearized equations: ~φR 0,t = − 1 2mB ∂2 xxφ I 0 + V0 + gBBA0 + gBF ∑ j Aj  sn 2(αx, k)φI 0 − gBBA0 + gBF ∑ j Aj + ω0 φI 0, ~φI 0,t = 1 2mB ∂2 xxφ R 0 + 3gBBA0 + gBF ∑ j Aj + ω0 φR 0 − V0 + 3gBBA0 + gBF ∑ j Aj  sn 2(αx, k)φR 0 + 2gBFA0 ( 1− sn 2(αx, k) )∑ j φR j , ~φR j,t = − 1 2mF ∂2 xxφ I j + (V0 + gBFA0)sn 2(αx, k)φI j − (gBFA0 + ωj)φI j , ~φI j,t = 1 2mF ∂2 xxφ R j − (V0 + gBFA0)sn 2(αx, k)φR j + (gBFA0 + ωj)φR j − 2gBF √ A0Aj ( 1− sn 2(αx, k) ) φR 0 , j = 1, . . . , Nf . Case III. Let B0 = −A0/k 2, Bj = −Aj/k 2 therefore the solutions are q0 = √ −A0dn (αx, k)/k, qj = √ −Ajdn (αx, k)/k, Exact Solutions for Equations of Bose–Fermi Mixtures 13 and we obtain the following linearized equations ~φR 0,t = − 1 2mB ∂2 xxφ I 0 + V0 + gBBA0 + gBF ∑ j Aj  sn 2(αx, k)φI 0 − gBBA0 + gBF ∑ j Aj + k2ω0  φI 0 k2 , ~φI 0,t = 1 2mB ∂2 xxφ R 0 + 3gBBA0 + gBF ∑ j Aj + k2ω0  φR 0 k2 , − V0 + 3gBBA0 + gBF ∑ j Aj  sn 2(αx, k)φR 0 + 2gBFA0(1− k2sn 2(α, k)) k2 ∑ j φR j , ~φR j,t = − 1 2mF ∂2 xxφ I j + (V0 + gBFA0) sn 2(αx, k)φI j − gBFA0 + k2ωj k2 φI j , ~φI j,t = 1 2mF ∂2 xxφ R j − (V0 + gBFA0) sn 2(αx, k)φR j + gBFA0 + k2ωj k2 φR j − 2gBF √ A0Aj ( 1− k2sn 2(α, k) ) φR 0 k2 , j = 1, . . . , Nf . These cases are by no means exhaustive. 8 Conclusions In conclusion, we have considered the mean field model for boson-fermion mixtures in optical lattice. Classes of quasi-periodic, periodic, elliptic solutions, and solitons have been analyzed in detail. These solutions can be used as initial states which can generate localized matter waves (solitons) through the modulational instability mechanism. This important problem is under consideration. Acknowledgements The present work is supported by the National Science Foundation of Bulgaria, contract No F-1410. References [1] Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S., Theory of Bose–Einstein condensation in trapped gases, Rev. Modern Phys. 71 (1999), 463–512, cond-mat/9806038. [2] Morsch O., Oberthaler M., Dynamics of Bose–Einstein condensates in optical lattices, Rev. Modern Phys. 78 (2006), 179–215. [3] Modugno G., Roati G., Riboli F., Ferlaino F., Brecha R.J., Inguscio M., Collapse of a degenerate Fermi gas, Science 297 (2002), no. 5590, 2240–2243. [4] Schreck F., Ferrari G., Corwin K.L., Cubizolles J., Khaykovich L., Mewes M.O., Salomon C., Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy, Phys. Rev. A 64 (2001), 011402R, 4 pages, cond-mat/0011291. [5] Tsurumi T., Wadati M., Dynamics of magnetically trapped boson-fermion mixtures, J. Phys. Soc. Japan 69 (2000), 97–103. [6] Santhanam J., Kenkre V.M., Konotop V.V., Solitons of Bose–Fermi mixtures in a strongly elongated trap, Phys. Rev. A 73 (2006), 013612, 6 pages, cond-mat/0511206. http://arxiv.org/abs/cond-mat/9806038 http://arxiv.org/abs/cond-mat/0011291 http://arxiv.org/abs/cond-mat/0511206 14 N.A. Kostov, V.S. Gerdjikov and T.I. Valchev [7] Karpiuk T., Brewczyk M., Ospelkaus-Schwarzer S., Bongs K., Gajda M., Rzazewski K., Soliton trains in Bose–Fermi mixtures, Phys. Rev. Lett. 93 (2004), 100410, 4 pages, cond-mat/0404320. [8] Salerno M., Matter-wave quantum dots and antidots in ultracold atomic Bose–Fermi mixtures, Phys. Rev. A 72 (2005), 063602, 7 pages, cond-mat/0503097. [9] Adhikari S.K., Fermionic bright soliton in a boson-fermion mixture, Phys. Rev. A 72 (2005), 053608, 7 pages, cond-mat/0509257. [10] Adhikari S.K., Mixing-demixing in a trapped degenerate fermion-fermion mixture, Phys. Rev. A 73 (2006), 043619, 6 pages, cond-mat/0607119. [11] Belmonte-Beitia J., Perez-Garcia V.M., Vekslerchik V., Modulational instability, solitons and periodic waves in models of quantum degenerate boson-fermion mixtures, Chaos Solitons Fractals 32 (2007), 1268–1277, nlin.SI/0512020. [12] Bludov Yu.V., Santhanam J., Kenkre V.M., Konotop V.V., Matter waves of Bose–Fermi mixtures in one- dimensional optical lattices, Phys. Rev. A 74 (2006) 043620, 14 pages. [13] Roati G., Riboli F., Modugno G., Inguscio M., Fermi–Bose quantum degenerate 87Rb-40K mixture with attractive interaction, Phys. Rev. Lett. 89 (2002), 150403, 4 pages, cond-mat/0205015. [14] Goldwin J., Inouye S., Olsen M.L., Newman B., DePaola B.D., Jin D.S., Measurement of the interac- tion strength in a Bose–Fermi mixture with 87Rb and 40K, Phys. Rev. A 70 (2004), 021601(R), 4 pages, cond-mat/0405419. [15] Bronski J.C., Carr L.D., Deconinck B., Kutz J.N., Bose–Einstein condensates in standing waves: the cubic nonlinear Schrödinger equation with a periodic potential, Phys. Rev. Lett. 86 (2001), 1402–1405, cond-mat/0007174. [16] Modugno M., Dalfovo F., Fort C., Maddaloni P., Minardi F., Dynamics of two colliding Bose–Einstein con- densates in an elongated magnetostatic trap, Phys. Rev. A 62 (2000), 063607, 8 pages, cond-mat/0007091. [17] Busch Th., Anglin J.R., Dark-bright solitons in inhomogeneous Bose–Einstein condensates, Phys. Rev. Lett. 87 (2001), 010401, 4 pages, cond-mat/0012354. [18] Deconinck B., Kutz J.N., Patterson M.S., Warner B.W., Dynamics of periodic multi-components Bose– Einstein condensates, J. Phys. A: Math. Gen. 36 (2003), 5431–5447. [19] Manakov S.V., On the theory of two-dimensional stationary self-focusing of electromagnetic waves, JETP 65 (1974), 505–516 (English transl.: Sov. Phys. JETP 38 (1974), 248–253). [20] Belokolos E.D., Bobenko A.I., Enolskii V.Z., Its A.R., Matveev V.B., Algebro-geometric approach to non- linear integrable equations, Springer, Berlin, 1994. [21] Porubov A.V., Parker D.F., Some general periodic solutions to coupled nonlinear Schrödinger equations, Wave Motion 29 (1999), 97–109. [22] Christiansen P.L., Eilbeck J.C., Enolskii V.Z., Kostov N.A., Quasiperiodic and periodic solutions for coupled nonlinear Schrödinger equations of Manakov type, Proc. R. Soc. Lond. Ser. A 456 (2000), 2263–2281. [23] Eilbeck J.C., Enolskii V.Z., Kostov N.A., Quasiperiodic and periodic solutions for vector nonlinear Schrö- dinger equations, J. Math. Phys. 41 (2000), 8236–8248. [24] Carr L.D., Kutz J.N., Reinhardt W.P., Stability of stationary states in the cubic nonlinear Schrödinger equation: applications to the Bose–Einstein condensate, Phys. Rev. E 63 (2001), 066604, 9 pages, cond-mat/0007117. [25] Bronski J.C., Carr L.D., Deconinck B., Kutz J.N., Promislow K., Stability of repulsive Bose–Einstein con- densates in a periodic potential, Phys. Rev. E 63 (2001), 036612, 11 pages, cond-mat/0010099. [26] Kostov N.A., Enol’skii V.Z., Gerdjikov V.S., Konotop V.V., Salerno M., Two-component Bose–Einstein condensates in periodic potential, Phys. Rev. E 70 (2004), 056617, 12 pages. [27] Abramowitz M., Stegun I.A. (Editors), Handbook of mathematical functions, Dover, New York, 1965. http://arxiv.org/abs/cond-mat/0404320 http://arxiv.org/abs/cond-mat/0503097 http://arxiv.org/abs/cond-mat/0509257 http://arxiv.org/abs/cond-mat/0607119 http://arxiv.org/abs/nlin.SI/0512020 http://arxiv.org/abs/cond-mat/0205015 http://arxiv.org/abs/cond-mat/0405419 http://arxiv.org/abs/cond-mat/0007174 http://arxiv.org/abs/cond-mat/0007091 http://arxiv.org/abs/cond-mat/0012354 http://arxiv.org/abs/cond-mat/0007117 http://arxiv.org/abs/cond-mat/0010099 1 Introduction 2 Basic equations 3 Stationary solutions with non-trivial phases 4 Type B nontrivial phase solutions 5 Examples of elliptic solutions 5.1 Mixed trivial phase solution 6 Vector soliton solutions 6.1 Vector bright-bright soliton solutions 6.2 Vector dark-dark soliton solutions 6.3 Vector bright-dark soliton solutions 6.4 Vector dark-bright soliton solutions 6.5 Vector dark-dark-bright soliton solutions 6.6 Nontrivial phase, trigonometric limit 7 Linear stability, preliminary results 8 Conclusions References