The Rahman Polynomials Are Bispectral

In a very recent paper, M. Rahman introduced a remarkable family of polynomials in two variables as the eigenfunctions of the transition matrix for a nontrivial Markov chain due to M. Hoare and M. Rahman. I indicate here that these polynomials are bispectral. This should be just one of the many rema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
1. Verfasser: Grünbaum, F.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147372
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Rahman Polynomials Are Bispectral / F.A. Grünbaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 34 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147372
record_format dspace
fulltext
spelling irk-123456789-1473722019-02-15T01:24:37Z The Rahman Polynomials Are Bispectral Grünbaum, F.A. In a very recent paper, M. Rahman introduced a remarkable family of polynomials in two variables as the eigenfunctions of the transition matrix for a nontrivial Markov chain due to M. Hoare and M. Rahman. I indicate here that these polynomials are bispectral. This should be just one of the many remarkable properties enjoyed by these polynomials. For several challenges, including finding a general proof of some of the facts displayed here the reader should look at the last section of this paper. 2007 Article The Rahman Polynomials Are Bispectral / F.A. Grünbaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 34 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 33C45; 22E45 http://dspace.nbuv.gov.ua/handle/123456789/147372 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In a very recent paper, M. Rahman introduced a remarkable family of polynomials in two variables as the eigenfunctions of the transition matrix for a nontrivial Markov chain due to M. Hoare and M. Rahman. I indicate here that these polynomials are bispectral. This should be just one of the many remarkable properties enjoyed by these polynomials. For several challenges, including finding a general proof of some of the facts displayed here the reader should look at the last section of this paper.
format Article
author Grünbaum, F.A.
spellingShingle Grünbaum, F.A.
The Rahman Polynomials Are Bispectral
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Grünbaum, F.A.
author_sort Grünbaum, F.A.
title The Rahman Polynomials Are Bispectral
title_short The Rahman Polynomials Are Bispectral
title_full The Rahman Polynomials Are Bispectral
title_fullStr The Rahman Polynomials Are Bispectral
title_full_unstemmed The Rahman Polynomials Are Bispectral
title_sort rahman polynomials are bispectral
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147372
citation_txt The Rahman Polynomials Are Bispectral / F.A. Grünbaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 34 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT grunbaumfa therahmanpolynomialsarebispectral
AT grunbaumfa rahmanpolynomialsarebispectral
first_indexed 2025-07-11T01:56:24Z
last_indexed 2025-07-11T01:56:24Z
_version_ 1837313820455862272