The Rahman Polynomials Are Bispectral
In a very recent paper, M. Rahman introduced a remarkable family of polynomials in two variables as the eigenfunctions of the transition matrix for a nontrivial Markov chain due to M. Hoare and M. Rahman. I indicate here that these polynomials are bispectral. This should be just one of the many rema...
Gespeichert in:
Datum: | 2007 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2007
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147372 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The Rahman Polynomials Are Bispectral / F.A. Grünbaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 34 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147372 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1473722019-02-15T01:24:37Z The Rahman Polynomials Are Bispectral Grünbaum, F.A. In a very recent paper, M. Rahman introduced a remarkable family of polynomials in two variables as the eigenfunctions of the transition matrix for a nontrivial Markov chain due to M. Hoare and M. Rahman. I indicate here that these polynomials are bispectral. This should be just one of the many remarkable properties enjoyed by these polynomials. For several challenges, including finding a general proof of some of the facts displayed here the reader should look at the last section of this paper. 2007 Article The Rahman Polynomials Are Bispectral / F.A. Grünbaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 34 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 33C45; 22E45 http://dspace.nbuv.gov.ua/handle/123456789/147372 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In a very recent paper, M. Rahman introduced a remarkable family of polynomials in two variables as the eigenfunctions of the transition matrix for a nontrivial Markov chain due to M. Hoare and M. Rahman. I indicate here that these polynomials are bispectral. This should be just one of the many remarkable properties enjoyed by these polynomials. For several challenges, including finding a general proof of some of the facts displayed here the reader should look at the last section of this paper. |
format |
Article |
author |
Grünbaum, F.A. |
spellingShingle |
Grünbaum, F.A. The Rahman Polynomials Are Bispectral Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Grünbaum, F.A. |
author_sort |
Grünbaum, F.A. |
title |
The Rahman Polynomials Are Bispectral |
title_short |
The Rahman Polynomials Are Bispectral |
title_full |
The Rahman Polynomials Are Bispectral |
title_fullStr |
The Rahman Polynomials Are Bispectral |
title_full_unstemmed |
The Rahman Polynomials Are Bispectral |
title_sort |
rahman polynomials are bispectral |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147372 |
citation_txt |
The Rahman Polynomials Are Bispectral / F.A. Grünbaum // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 34 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT grunbaumfa therahmanpolynomialsarebispectral AT grunbaumfa rahmanpolynomialsarebispectral |
first_indexed |
2025-07-11T01:56:24Z |
last_indexed |
2025-07-11T01:56:24Z |
_version_ |
1837313820455862272 |