From su(2) Gaudin Models to Integrable Tops

In the present paper we derive two well-known integrable cases of rigid body dynamics (the Lagrange top and the Clebsch system) performing an algebraic contraction on the two-body Lax matrices governing the (classical) su(2) Gaudin models. The procedure preserves the linear r-matrix formulation of t...

Full description

Saved in:
Bibliographic Details
Date:2007
Main Authors: Petrera, M., Ragnisco, O.
Format: Article
Language:English
Published: Інститут математики НАН України 2007
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147380
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:From su(2) Gaudin Models to Integrable Tops / M. Petrera, O. Ragnisco // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147380
record_format dspace
fulltext
spelling irk-123456789-1473802019-02-15T01:24:41Z From su(2) Gaudin Models to Integrable Tops Petrera, M. Ragnisco, O. In the present paper we derive two well-known integrable cases of rigid body dynamics (the Lagrange top and the Clebsch system) performing an algebraic contraction on the two-body Lax matrices governing the (classical) su(2) Gaudin models. The procedure preserves the linear r-matrix formulation of the ancestor models. We give the Lax representation of the resulting integrable systems in terms of su(2) Lax matrices with rational and elliptic dependencies on the spectral parameter. We finally give some results about the many-body extensions of the constructed systems. 2007 Article From su(2) Gaudin Models to Integrable Tops / M. Petrera, O. Ragnisco // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 29 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 70E17; 70E40; 37J35 http://dspace.nbuv.gov.ua/handle/123456789/147380 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In the present paper we derive two well-known integrable cases of rigid body dynamics (the Lagrange top and the Clebsch system) performing an algebraic contraction on the two-body Lax matrices governing the (classical) su(2) Gaudin models. The procedure preserves the linear r-matrix formulation of the ancestor models. We give the Lax representation of the resulting integrable systems in terms of su(2) Lax matrices with rational and elliptic dependencies on the spectral parameter. We finally give some results about the many-body extensions of the constructed systems.
format Article
author Petrera, M.
Ragnisco, O.
spellingShingle Petrera, M.
Ragnisco, O.
From su(2) Gaudin Models to Integrable Tops
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Petrera, M.
Ragnisco, O.
author_sort Petrera, M.
title From su(2) Gaudin Models to Integrable Tops
title_short From su(2) Gaudin Models to Integrable Tops
title_full From su(2) Gaudin Models to Integrable Tops
title_fullStr From su(2) Gaudin Models to Integrable Tops
title_full_unstemmed From su(2) Gaudin Models to Integrable Tops
title_sort from su(2) gaudin models to integrable tops
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/147380
citation_txt From su(2) Gaudin Models to Integrable Tops / M. Petrera, O. Ragnisco // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 29 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT petreram fromsu2gaudinmodelstointegrabletops
AT ragniscoo fromsu2gaudinmodelstointegrabletops
first_indexed 2025-07-11T01:59:20Z
last_indexed 2025-07-11T01:59:20Z
_version_ 1837313987378675712