Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs

We study Gelfand pairs for locally compact quantum groups. We give an operator algebraic interpretation and show that the quantum Plancherel transformation restricts to a spherical Plancherel transformation. As an example, we turn the quantum group analogue of the normaliser of SU(1,1) in SL(2,C) to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
1. Verfasser: Caspers, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147385
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs / M. Caspers // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 44 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-147385
record_format dspace
fulltext
spelling irk-123456789-1473852019-02-15T01:24:16Z Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs Caspers, M. We study Gelfand pairs for locally compact quantum groups. We give an operator algebraic interpretation and show that the quantum Plancherel transformation restricts to a spherical Plancherel transformation. As an example, we turn the quantum group analogue of the normaliser of SU(1,1) in SL(2,C) together with its diagonal subgroup into a pair for which every irreducible corepresentation admits at most two vectors that are invariant with respect to the quantum subgroup. Using a Z₂-grading, we obtain product formulae for little q-Jacobi functions. 2011 Article Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs / M. Caspers // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 44 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 16T99; 43A90 http://dspace.nbuv.gov.ua/handle/123456789/147385 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study Gelfand pairs for locally compact quantum groups. We give an operator algebraic interpretation and show that the quantum Plancherel transformation restricts to a spherical Plancherel transformation. As an example, we turn the quantum group analogue of the normaliser of SU(1,1) in SL(2,C) together with its diagonal subgroup into a pair for which every irreducible corepresentation admits at most two vectors that are invariant with respect to the quantum subgroup. Using a Z₂-grading, we obtain product formulae for little q-Jacobi functions.
format Article
author Caspers, M.
spellingShingle Caspers, M.
Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Caspers, M.
author_sort Caspers, M.
title Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs
title_short Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs
title_full Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs
title_fullStr Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs
title_full_unstemmed Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs
title_sort spherical fourier transforms on locally compact quantum gelfand pairs
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/147385
citation_txt Spherical Fourier Transforms on Locally Compact Quantum Gelfand Pairs / M. Caspers // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 44 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT caspersm sphericalfouriertransformsonlocallycompactquantumgelfandpairs
first_indexed 2025-07-11T01:59:48Z
last_indexed 2025-07-11T01:59:48Z
_version_ 1837314016142163968