Recurrence Coefficients of a New Generalization of the Meixner Polynomials

We investigate new generalizations of the Meixner polynomials on the lattice N, on the shifted lattice N+1−β and on the bi-lattice N∪(N+1−β). We show that the coefficients of the three-term recurrence relation for the orthogonal polynomials are related to the solutions of the fifth Painlevé equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Filipuk, G., Van Assche, W.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/147388
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Recurrence Coefficients of a New Generalization of the Meixner Polynomials / G. Filipuk, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We investigate new generalizations of the Meixner polynomials on the lattice N, on the shifted lattice N+1−β and on the bi-lattice N∪(N+1−β). We show that the coefficients of the three-term recurrence relation for the orthogonal polynomials are related to the solutions of the fifth Painlevé equation PV. Initial conditions for different lattices can be transformed to the classical solutions of PV with special values of the parameters. We also study one property of the Bäcklund transformation of PV.