Recurrence Coefficients of a New Generalization of the Meixner Polynomials
We investigate new generalizations of the Meixner polynomials on the lattice N, on the shifted lattice N+1−β and on the bi-lattice N∪(N+1−β). We show that the coefficients of the three-term recurrence relation for the orthogonal polynomials are related to the solutions of the fifth Painlevé equation...
Gespeichert in:
Datum: | 2011 |
---|---|
Hauptverfasser: | Filipuk, G., Van Assche, W. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2011
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147388 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Recurrence Coefficients of a New Generalization of the Meixner Polynomials / G. Filipuk, W. Van Assche // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Meixner polynomials and their properties
von: V. L. Makarov
Veröffentlicht: (2019) -
Generalized stochastic derivatives on spaces of nonregular generalized functions of Meixner white noise
von: Kachanovsky, N.A.
Veröffentlicht: (2008) -
On Certain Wronskians of Multiple Orthogonal Polynomials
von: Zhang, L., et al.
Veröffentlicht: (2014) -
Polynomials with integer coefficients and Chebyshev polynomials
von: R. M. Trigub
Veröffentlicht: (2016) -
Recurrences and congruences for higher order geometric polynomials and related numbers
von: L. Kargın, et al.
Veröffentlicht: (2021)