An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations)
We construct a family of second-order linear difference equations parametrized by the hypergeometric solution of the elliptic Painlevé equation (or higher-order analogues), and admitting a large family of monodromy-preserving deformations. The solutions are certain semiclassical biorthogonal functio...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/147389 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) / E.M. Rains // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-147389 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1473892019-02-15T01:24:08Z An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) Rains, E.M. We construct a family of second-order linear difference equations parametrized by the hypergeometric solution of the elliptic Painlevé equation (or higher-order analogues), and admitting a large family of monodromy-preserving deformations. The solutions are certain semiclassical biorthogonal functions (and their Cauchy transforms), biorthogonal with respect to higher-order analogues of Spiridonov's elliptic beta integral. 2011 Article An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) / E.M. Rains // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 26 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33E17; 34M55; 39A13 http://dspace.nbuv.gov.ua/handle/123456789/147389 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We construct a family of second-order linear difference equations parametrized by the hypergeometric solution of the elliptic Painlevé equation (or higher-order analogues), and admitting a large family of monodromy-preserving deformations. The solutions are certain semiclassical biorthogonal functions (and their Cauchy transforms), biorthogonal with respect to higher-order analogues of Spiridonov's elliptic beta integral. |
format |
Article |
author |
Rains, E.M. |
spellingShingle |
Rains, E.M. An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Rains, E.M. |
author_sort |
Rains, E.M. |
title |
An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) |
title_short |
An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) |
title_full |
An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) |
title_fullStr |
An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) |
title_full_unstemmed |
An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) |
title_sort |
isomonodromy interpretation of the hypergeometric solution of the elliptic painlevé equation (and generalizations) |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/147389 |
citation_txt |
An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations) / E.M. Rains // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 26 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT rainsem anisomonodromyinterpretationofthehypergeometricsolutionoftheellipticpainleveequationandgeneralizations AT rainsem isomonodromyinterpretationofthehypergeometricsolutionoftheellipticpainleveequationandgeneralizations |
first_indexed |
2025-07-11T02:00:09Z |
last_indexed |
2025-07-11T02:00:09Z |
_version_ |
1837314039263264768 |